OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Stokes scattering matrix for human skin

Anak Bhandari, Snorre Stamnes, Børge Hamre, Øyvind Frette, Knut Stamnes, and Jakob J. Stamnes  »View Author Affiliations

Applied Optics, Vol. 51, Issue 31, pp. 7487-7498 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a layered model of normal human skin based on size distributions of polydisperse spherical particles and their complex refractive indices to compute the Stokes scattering matrix at wavelengths in the visible spectral band. The elements of the Stokes scattering matrix are required in a polarized radiative transfer code for a coupled air–tissue system to compute the polarized reflectance and examine how it is dependent on the vertical structure of the inherent optical properties of skin, including the phase matrix. Thus, the elements of the Stokes scattering matrix can be useful for investigating polarization-dependent light propagation in turbid optical media, such as human skin tissue.

© 2012 Optical Society of America

OCIS Codes
(170.7050) Medical optics and biotechnology : Turbid media
(290.5855) Scattering : Scattering, polarization
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:

Original Manuscript: August 2, 2012
Revised Manuscript: September 25, 2012
Manuscript Accepted: October 1, 2012
Published: October 23, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Anak Bhandari, Snorre Stamnes, Børge Hamre, Øyvind Frette, Knut Stamnes, and Jakob J. Stamnes, "Stokes scattering matrix for human skin," Appl. Opt. 51, 7487-7498 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Swanson, S. D. Laman, M. Biryulina, K. P. Nielsen, G. Ryzhikov, J. J. Stamnes, B. Hamre, L. Zhao, F. S. Castellana, and K. Stamnes, “Optical transfer diagnosis of pigmented lesions: a pilot study,” Skin Res. Technol. 15, 330–337(2009). [CrossRef]
  2. E. J. Dennis, G. J. Dolmans, R. K. Jain, and D. Fukumura, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3, 380–387 (2003). [CrossRef]
  3. M. Rubinstein and W. B. Armstrong, “Transoral laser microsurgery for laryngeal cancer: a primer and review of laser dosimetry,” Lasers Med. Sci. 26, 113–124 (2011). [CrossRef]
  4. P. A. Payne, “Measurement of properties and function of skin,” Clin. Phys. Physiol. Meas. 12, 105–129 (1991). [CrossRef]
  5. M. Gillison, A History of the Body Tissues (Williams & Wilkins, 1962).
  6. K. P. Nielsen, L. Zhao, P. Juzenas, J. J. Stamnes, K. Stamnes, and J. Moan, “Reflectance spectra of pigmented and non-pigmented skin in the UV spectral region,” Photochem. Photobiol. 80, 450–455 (2004).
  7. M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37, 1277–1285 (2005). [CrossRef]
  8. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 1–4 (2004). [CrossRef]
  9. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Estimation of wavelength dependence of refractive index of collagen fibers of scleral tissue,” Proc. SPIE 4162, 265–267 (2000).
  10. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef]
  11. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005). [CrossRef]
  12. J. Sandby-Møller, T. Paulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking,” Acta Derm. Venereol. 83, 410–413 (2003).
  13. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12, 3236–3244 (2004). [CrossRef]
  14. S. R. Sharma, R. Poddar, P. Sen, and J. T. Andrews, “Effect of vitamin C on collagen biosynthesis and degree of birefringence in polarization sensitive optical coherence tomography (PS-OCT),” Afr. J. Biotech. 7, 2049–2054 (2008).
  15. V. V. Tuchin, Tissue Optics (SPIE, 2007).
  16. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002). [CrossRef]
  17. Y. Liu, Y. L. Kim, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromine, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for early cancer detection,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CMG4.
  18. X.-H. Hu and J. Q. Lu, “Optical detection of cancers,” in Encyclopedia of Biomaterial and Biomedical Engineering (Taylor & Francis, 2005). [CrossRef]
  19. E. J. Bae, S. H. Seo, Y. C. Kye, and H. H. Ahn, “A quantitative assessment of the human skin surface using polarized light digital photography and its dermatologic significance,” Skin Res. Technol. 16(3), 270–274 (2010).
  20. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989). [CrossRef]
  21. K. Hestenes, K. P. Nielsen, L. Zhao, J. J. Stamnes, and K. Stamnes, “Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system,” Appl. Opt. 46, 2333–2350 (2007). [CrossRef]
  22. C. Magnain, M. Elias, and J. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A 24, 2196–2203 (2007). [CrossRef]
  23. K. Stamnes, B. Hamre, J. J. Stamnes, G. Ryzhikov, M. Biryulina, R. Mahoney, B. Haus, and A. Sei, “Modeling of radiation transport in coupled atmosphere-snow-ice-ocean systems,” J. Quant. Sprectrosc. Radiat. Transfer 112, 714–726 (2011). [CrossRef]
  24. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  25. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  26. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef]
  27. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  28. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  29. A. M. K. Nilsson, P. Alshom, A. Karlson, and S. A. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2747 (1998). [CrossRef]
  30. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 2002).
  31. F. M. Schulz, K. Stamnes, and F. Weng, “VDISORT: an improved generalized discrete ordinate method for polarized (vector) radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 61, 105–122 (1999). [CrossRef]
  32. O. V. Postylyakov, “Linearized vector radiative transfer model MCC++ for a spherical atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 88, 297–317 (2004). [CrossRef]
  33. D. M. Stam and J. W. Hovenier, “Errors in calculated planetary phase functions and albedos due to neglecting polarization,” Astron. Astrophys. 444, 275–286 (2005). [CrossRef]
  34. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  35. J. W. Hovenier, C. Van Der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres (Kluwer Academic, 2004).
  36. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, “Multiple scattering by random particulates media: exact 3D results,” Opt. Express 15, 2822–2836 (2007). [CrossRef]
  37. M. I. Mishchenko and L. Liu, “Electromagnetic scattering by densely packed particulates ice at radar wavelength: exact theoretical results and remote-sensing implications,” Appl. Opt. 48, 2421–2425 (2009). [CrossRef]
  38. W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985). [CrossRef]
  39. A. B. David, “Mueller matrices and information derived from linear polarization lidar measurements: theory,” Appl. Opt. 37, 2448–2463 (1998). [CrossRef]
  40. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef]
  41. K. J. Voss, “Measurement of Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984). [CrossRef]
  42. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference, time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999). [CrossRef]
  43. K. P. Nielsen, L. Zhao, J. J. Stamnes, K. Stamnes, and J. Moan, “Importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes,” J. Photochem. Photobiol. 82, 194–198 (2006). [CrossRef]
  44. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51, 1479–1489 (2006). [CrossRef]
  45. E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across the science: keys and clues,” BioScience 51, 341–351 (2001). [CrossRef]
  46. M. I. Mishchenko, and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented rotationally symmetric scatters,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  47. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).
  48. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  49. R. Vilaplana, F. Moreno, and A. Molina, “Study of the sensitivity of size-averaged scattering matrix elements of nonspherical particles to changes in shape, porosity and refractive index,” J. Quant. Spectrosc. Radiat. Transfer 100, 415–428 (2006). [CrossRef]
  50. W. A. de Rooij and C. C. A. H. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).
  51. J. W. Hovenier and C. V. M. van der Mee, “Scattering of polarized light: properties of the elements of the phase matrix,” Astron. Astrophys. 196, 287–295 (1988).
  52. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000). [CrossRef]
  53. C. E. Siewert, “On the phase matrix basic to the scattering of polarized light,” Astron. Astrophys. 109, 195–200 (1982).
  54. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd ed. (Cambridge University, 2002).
  55. A. Bhandari, B. Hamre, Ø. Frette, K. Stamnes, and J. J. Stamnes, “Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices,” Appl. Opt. 19, 14549–14567 (2011). [CrossRef]
  56. http://www.giss.nasa.gov/crmim .
  57. A. R. Jones, “Light scattering for particle characterization,” Progr. Energy Combust. Sci. 25, 1–53 (1999).
  58. H. Ding, J. Q. Lu, R. S. Brock, T. J. McConnell, J. F. Ojeda, K. M. Jacobs, and X.-H. Hu, “Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm,” J. Biomed. Opt. 12, 034032 (2007). [CrossRef]
  59. M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7223 (1994). [CrossRef]
  60. V. P. Tishkovets and M. I. Mishchenko, “Coherent backscattering of light by a layer of discrete random medium,” J. Quant. Spectrosc. Radiat. Transfer 86, 161–180 (2004). [CrossRef]
  61. K. Muinonen, J. Tyynela, E. Zubko, H. Lindqvist, A. Penttila, and G. Videen, “Polarization of light backscattered by small particles,” J. Quant. Spectrosc. Radiat. Transfer 112, 2193–2212 (2011). [CrossRef]
  62. J. M. Dlugach, M. I. Mishchenko, L. Liu, and D. W. Mackowski, “Numerically-exact computer simulations of light scattering by densely packed, random particulate media,” J. Quant. Spectrosc. Radiat. Transfer 112, 2068–2078 (2011). [CrossRef]
  63. T. Mar, “Measurement of mitochondrial volume independent of refractive index by light scattering,” J. Biochem. Biophys. Methods 4, 177–184 (1981). [CrossRef]
  64. F. Voit, A. Hohmann, J. Schäfer, and A. Kienle, “Multiple scattering of polarized light: comparasion of Maxwell theory and radiative transfer theory,” J. Biomed. Opt. 17, 045003 (2012). [CrossRef]
  65. J. Begic-Rahic and S. Vranic, “The application of bioptron light therapy in dermatology and wound healing,” Eur. Dermatol. 5, 57–60 (2010).
  66. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004). [CrossRef]
  67. E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in coupled system consisting of two media with different refractive indices,” J. Quant. Spectrosc. Radiat. Transfer 111, 616–633 (2010). [CrossRef]
  68. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405 (2005). [CrossRef]
  69. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transfer 46, 413–423 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited