OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements

Tristan Harmel, Alexander Gilerson, Alberto Tonizzo, Jacek Chowdhary, Alan Weidemann, Robert Arnone, and Sam Ahmed  »View Author Affiliations

Applied Optics, Vol. 51, Issue 35, pp. 8324-8340 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Above-water measurements of water-leaving radiance are widely used for water-quality monitoring and ocean-color satellite data validation. Reflected skylight in above-water radiometry needs to be accurately estimated prior to derivation of water-leaving radiance. Up-to-date methods to estimate reflection of diffuse skylight on rough sea surfaces are based on radiative transfer simulations and sky radiance measurements. But these methods neglect the polarization state of the incident skylight, which is generally highly polarized. In this paper, the effects of polarization on the sea surface reflectance and the subsequent water-leaving radiance estimation are investigated. We show that knowledge of the polarization field of the diffuse skylight significantly improves above-water radiometry estimates, in particular in the blue part of the spectrum where the reflected skylight is dominant. A newly developed algorithm based on radiative transfer simulations including polarization is described. Its application to the standard Aerosol Robotic Network-Ocean Color and hyperspectral radiometric measurements of the 1.5-year dataset acquired at the Long Island Sound site demonstrates the noticeable importance of considering polarization for water-leaving radiance estimation. In particular it is shown, based on time series of collocated data acquired in coastal waters, that the azimuth range of measurements leading to good-quality data is significantly increased, and that these estimates are improved by more than 12% at 413 nm. Full consideration of polarization effects is expected to significantly improve the quality of the field data utilized for satellite data validation or potential vicarious calibration purposes.

© 2012 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 25, 2012
Revised Manuscript: November 5, 2012
Manuscript Accepted: November 5, 2012
Published: December 5, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Tristan Harmel, Alexander Gilerson, Alberto Tonizzo, Jacek Chowdhary, Alan Weidemann, Robert Arnone, and Sam Ahmed, "Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements," Appl. Opt. 51, 8324-8340 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. International Ocean-Colour Coordinating Group, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (International Ocean-Colour Coordinating Group, 2008), p. 7.
  2. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  3. D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008). [CrossRef]
  4. G. Zibordi, B. N. Holben, I. Slutsker, D. Giles, D. D’Alimonte, F. Mélin, J. F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: a network for the validation of ocean color primary radiometric products,” J. Atmos. Ocean. Technol 26, 1634–1651 (2009). [CrossRef]
  5. D. K. Clark, M. A. Yarbrough, M. E. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision4, 3–34 (2003).
  6. J. L. Mueller, A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter, and K. Voss, Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., NASA/TM-2003-211621 (NASA, 2003).
  7. S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above-and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486–515, (2002). [CrossRef]
  8. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE T. Geosci. Remote Sens. 42, 401–415 (2004). [CrossRef]
  9. T. Harmel, A. Gilerson, S. Hlaing, A. Tonizzo, T. Legbandt, A. Weidemann, R. Arnone, and S. Ahmed, “Long Island Sound Coastal Observatory: assessment of above-water radiometric measurement uncertainties using collocated multi and hyperspectral systems,” Appl. Opt. 50, 5842–5860 (2011). [CrossRef]
  10. G. Zibordi, “Comment on ‘Long Island Sound Coastal Observatory: assessment of above-water radiometric measurement uncertainties using collocated multi and hyperspectral systems’,” Appl. Opt. 51, 3888–3892 (2012). [CrossRef]
  11. T. Harmel, A. Gilerson, S. Hlaing, A. Weidemann, R. Arnone, and S. Ahmed, “Long Island Sound Coastal Observatory: assessment of above-water radiometric measurement uncertainties using collocated multi and hyper-spectral systems: reply to comment,” Appl. Opt. 51, 3893–3899 (2012). [CrossRef]
  12. K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  13. Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” Ocean Optics XIII, 160–166 (1997). [CrossRef]
  14. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455(1999). [CrossRef]
  15. S. B. Hooker, G. Zibordi, J. F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43, 4254–4268 (2004). [CrossRef]
  16. B. Fougnie, R. Frouin, P. Lecomte, and P. Y. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999). [CrossRef]
  17. Z. Lee, K. L. Carder, T. G. Peacock, and R. G. Steward, “Remote sensing reflectance measured with and without a vertical polarizer,” Proc. SPIE, 2963, 483–488 (1997). [CrossRef]
  18. P. Y. Deschamps, B. Fougnie, R. Frouin, P. Lecomte, and C. Verwaerde, “SIMBAD: a field radiometer for satellite ocean-color validation,” Appl. Opt. 43, 4055–4069 (2004). [CrossRef]
  19. G. Horvath, A. Barta, J. Gal, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41, 543–559 (2002). [CrossRef]
  20. A. Tonizzo, A. Gilerson, T. Harmel, A. Ibrahim, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Estimating particle composition and size distribution from polarized water-leaving radiance,” Appl. Opt. 50, 5047–5058 (2011). [CrossRef]
  21. F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009). [CrossRef]
  22. T. Harmel and M. Chami, “Influence of polarimetric satellite data measured in the visible region on aerosol detection and on the performance of atmospheric correction procedure over open ocean waters,” Opt. Express 19, 20960–20983 (2011). [CrossRef]
  23. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, and T. Nakajima, “AERONET: a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  24. P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23, 1816–1824 (1984). [CrossRef]
  25. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).
  26. Y. Kawata, “Circular polarization of sunlight reflected by planetary atmospheres,” Icarus 33, 217–232 (1978). [CrossRef]
  27. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance,” Appl. Opt. 45, 6762–6774 (2006). [CrossRef]
  28. C. Cox and W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar Res. 13, 198–227 (1954).
  29. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the suns glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  30. C. Cox and W. Munk, Slopes of the Sea Surface Deduced from Photographs of Sun Glitter (Scripps Institution of Oceanography, 1956).
  31. P. W. Zhai, Y. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transfer 111, 1025–1040 (2010). [CrossRef]
  32. M. Sancer, “Shadow-corrected electromagnetic scattering from a randomly rough surface,” IEEE Trans. Antennas Propag. 17, 577–585 (1969). [CrossRef]
  33. K. J. Voss and N. Souaidia, “POLRADS: polarization radiance distribution measurement system,” Opt. Express 18, 19672–19680 (2010). [CrossRef]
  34. J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006). [CrossRef]
  35. M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398–2416 (2001). [CrossRef]
  36. E. P. Zege and L. I. Chaikovskaya, “New approach to the polarized radiative transfer problem,” J. Quant. Spectrosc. Radiat. Transfer 55, 19–31 (1996). [CrossRef]
  37. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanog. 34, 1453–1472 (1989). [CrossRef]
  38. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D’Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808–819 (2002). [CrossRef]
  39. J. T. Adams and D. J. Gray, “Neutral points in an atmosphere-ocean system. 2: downwelling light field,” Appl. Opt. 50, 335–346 (2011). [CrossRef]
  40. C. Emde, R. Buras, B. Mayer, and M. Blumthaler, “The impact of aerosols on polarized sky radiance: model development, validation, and applications,” Atmos. Chem. Phys. 10, 383–396 (2010). [CrossRef]
  41. A. A. Lacis, J. Chowdhary, M. I. Mishchenko, and B. Cairns, “Modeling errors in diffuse-sky radiation: vector vs. scalar treatment,” Geophys. Res. Lett. 25, 135–138 (1998). [CrossRef]
  42. D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010). [CrossRef]
  43. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696(2000). [CrossRef]
  44. N. T. O’Neill, T. F. Eck, A. Smirnov, B. N. Holben, and S. Thulasiraman, “Spectral discrimination of coarse and fine mode optical depth,” J. Geophys. Res. 108, 4559 (2003). [CrossRef]
  45. B. N. Holben, D. Tanré, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. V. Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001). [CrossRef]
  46. K. T. Whitby, “The physical characteristics of sulfur aerosols,” Atmos. Environ. 12, 135–159 (1978). [CrossRef]
  47. C. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Meteorol. 12, 13–25 (1955).
  48. C. E. Junge, Air Chemistry and Radioactivity (Academic, 1963).
  49. Y. J. Kaufman, A. Smirnov, B. N. Holben, and O. Dubovik, “Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties,” Geophys. Res. Lett. 28, 3251–3256 (2001). [CrossRef]
  50. P. N. Francis, P. Hignett, and J. P. Taylor, “Aircraft observations and modeling of sky radiance distributions from aerosol during TARFOX,” J. Geophys. Res. 104, 2309–2319 (1999). [CrossRef]
  51. O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806 (2000). [CrossRef]
  52. J. L. Deuze, P. Goloub, M. Herman, A. Marchand, G. Perry, S. Susana, and D. Tanre, “Estimate of the aerosol properties over the ocean with POLDER,” J. Geophys. Res. 105, 15329–15346 (2000). [CrossRef]
  53. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004). [CrossRef]
  54. M. Wang and H. R. Gordon, “Radiance reflected from the ocean-atmosphere system: synthesis from individual components of the aerosol size distribution,” Appl. Opt. 33, 7088 (1994). [CrossRef]
  55. M. Herman, J. L. Deuze, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, 1–11 (2005). [CrossRef]
  56. R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for Remote Sensing of Tropospheric Aerosol over Dark Targets from MODIS,” Collections 005, and 051: Revision 2 (2009).
  57. G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Solar Phys. 214, 1–22 (2003).
  58. G. W. Paltridge and C. M. R. Platt, Radiative Processes in Meteorology and Climatology (Elsevier, 1976).
  59. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef]
  60. D. Tanre, M. Herman, P. Y. Deschamps, and A. Deleffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979). [CrossRef]
  61. Y. You, D. Stramski, M. Darecki, and G. W. Kattawar, “Modeling of wave-induced irradiance fluctuations at near-surface depths in the ocean: a comparison with measurements,” Appl. Opt. 49, 1041–1053 (2010). [CrossRef]
  62. Y. You, G. W. Kattawar, K. J. Voss, P. Bhandari, J. Wei, M. Lewis, C. J. Zappa, and H. Schultz, “Polarized light field under dynamic ocean surfaces: numerical modeling compared with measurements,” J. Geophys. Res. 116, C00H05 (2011). [CrossRef]
  63. M. Ottaviani, R. Spurr, K. Stamnes, W. Li, W. Su, and W. Wiscombe, “Improving the description of sunglint for accurate prediction of remotely sensed radiances,” J. Quant. Spectrosc. Radiat. Transfer 109, 2364–2375 (2008). [CrossRef]
  64. S. Kay, J. Hedley, S. Lavender, and A. Nimmo-Smith, “Light transfer at the ocean surface modeled using high resolution sea surface realizations,” Opt. Express 19, 6493–6504 (2011). [CrossRef]
  65. S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sensing 1, 697–730 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited