OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Fourier transform digital holographic adaptive optics imaging system

Changgeng Liu, Xiao Yu, and Myung K. Kim  »View Author Affiliations


Applied Optics, Vol. 51, Issue 35, pp. 8449-8454 (2012)
http://dx.doi.org/10.1364/AO.51.008449


View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(090.1995) Holography : Digital holography

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 4, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: November 15, 2012
Published: December 10, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Changgeng Liu, Xiao Yu, and Myung K. Kim, "Fourier transform digital holographic adaptive optics imaging system," Appl. Opt. 51, 8449-8454 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-35-8449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  2. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977). [CrossRef]
  3. M. A. van Dam, D. Le Mignant, and B. A. Macintosh, “Performance of the Keck observatory adaptive optics system,” Appl. Opt. 43, 5458–5467 (2004). [CrossRef]
  4. M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt. 49, D17–D29 (2010). [CrossRef]
  5. J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  6. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [CrossRef]
  7. K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55, 3425–3467 (2008). [CrossRef]
  8. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express 10, 419–428 (2002). [CrossRef]
  9. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002). [CrossRef]
  10. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006). [CrossRef]
  11. Q. Mu, Z. Cao, D. Li, and L. Xuan, “Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye,” Opt. Express 15, 1946–1953 (2007). [CrossRef]
  12. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007). [CrossRef]
  13. M. J. Booth, D. Debarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photon. News 23(1), 22–29 (2012). [CrossRef]
  14. C. Liu and M. K. Kim, “Digital holographic adaptive optics for ocular imaging: proof of principle,” Opt. Lett. 36, 2710–2712 (2011). [CrossRef]
  15. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  16. E. Cuche, P. Marquet, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  17. C. Mann, L. Yu, C. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005). [CrossRef]
  18. C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 1058021 (2009). [CrossRef]
  19. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010). [CrossRef]
  20. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences (Springer Science+Business Media, 2011), pp. 55–93.
  21. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  22. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of lensless holographic imaging system,” Appl. Opt. 41, 4489–4496 (2002). [CrossRef]
  23. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37, 2694–2696 (2012). [CrossRef]
  24. F. Dubois and C. Yourassowsky, “Full off-axis red-green-blue digital holographic microscope with LED illumination,” Opt. Lett. 37, 2190–2192 (2012). [CrossRef]
  25. R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37, 3723–3725 (2012). [CrossRef]
  26. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  27. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited