Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-resolution multiband polarization epithelial tissue imaging method by sparse representation and fusion

Not Accessible

Your library or personal account may give you access

Abstract

Multiband polarization epithelial tissue imaging is an effective tool to measure tissue’s birefringence and structure for quantitative pathology analysis. To discriminate the pathology accurately, high-resolution multiband polarization images are essential. But it is difficult to acquire high-resolution polarization images because of the limitations of imaging systems. The polarization image calculation process can be regarded as image fusion with fixed rules, and multiband polarization images are intrinsically sparse. In this paper, we propose a novel high-resolution multiband polarization image calculation method by utilizing the sparse representation and image fusion method. The multiband images are first represented in the sparse domain and we further introduce total-variation-regularization terms into the sparse representation framework. Then, polarization parameter images are calculated by simultaneous fusion and reconstruction. Higher quality multiband polarization images can be obtained through additional regularization constraint in the fusion process. Extensive experiments validate that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both peak signal-to-noise-ratio and visual perception.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Image decomposition fusion method based on sparse representation and neural network

Lihong Chang, Xiangchu Feng, Rui Zhang, Hua Huang, Weiwei Wang, and Chen Xu
Appl. Opt. 56(28) 7969-7977 (2017)

Image fusion via nonlocal sparse K-SVD dictionary learning

Ying Li, Fangyi Li, Bendu Bai, and Qiang Shen
Appl. Opt. 55(7) 1814-1823 (2016)

Regional multifocus image fusion using sparse representation

Long Chen, Jinbo Li, and C. L. Philip Chen
Opt. Express 21(4) 5182-5197 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.