OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Live tissue viability and chemosensitivity assays using digital holographic motility contrast imaging

Ran An, John Turek, Daniela Elena Matei, and David Nolte  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A300-A309 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic optical coherence imaging is an en face form of optical coherence tomography that uses low-coherence digital holography as a coherence gate to select light from a chosen depth inside scattering tissue. By acquiring successive holograms at a high camera frame rate at a fixed depth, dynamic speckle provides information concerning dynamic light scattering from intracellular motility. Motility contrast imaging (MCI) uses living motion as a label-free and functional biomarker. MCI provides a new form of viability assay and also is applicable for proliferation and cytotoxicity assays. The results presented here demonstrate that low-coherence digital holography can extract viability information from biologically relevant three-dimensional (3D) tissue based on multicellular tumor spheroids by moving beyond the format of two-dimensional cell culture used for conventional high-content analysis. This paper also demonstrates the use of MCI for chemosensitivity assays on tumor exgrafts of excised ovarian cancer tumors responding to standard-of-care cisplatin chemotherapy. This ex vivo application extends the applicability of MCI beyond 3D tissue culture grown in vitro.

© 2012 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(090.1995) Holography : Digital holography

Original Manuscript: August 21, 2012
Revised Manuscript: October 20, 2012
Manuscript Accepted: October 21, 2012
Published: November 28, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Ran An, John Turek, Daniela Elena Matei, and David Nolte, "Live tissue viability and chemosensitivity assays using digital holographic motility contrast imaging," Appl. Opt. 52, A300-A309 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Stoddart, “Cell viability assays: introduction,” in Mammalian Cell Viability: Methods and Protocols, M. J. Stoddart, ed. (Humana, 2011), pp. 1–6.
  2. V. N. Sumantran, “Cellular chemosensitivity assays: an overview,” in Cancer Cell Culture: Methods and Protocols, I. A. Cree, ed., 2nd ed. (Humana, 2011), pp. 219–236.
  3. T. Jacks and R. A. Weinberg, “Taking the study of cancer cell survival to a new dimension,” Cell 111, 923–925 (2002). [CrossRef]
  4. K. S. M. Smalley, M. Lioni, and M. Herlyn, “Life isn’t flat: taking cancer biology to the next dimension,” In Vitro Cell. Dev. Biol. Anim. 42, 242–247 (2006). [CrossRef]
  5. E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, “Taking cell-matrix adhesions to the third dimension,” Science 294, 1708–1712 (2001). [CrossRef]
  6. F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007). [CrossRef]
  7. P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, “Life sciences require the third dimension,” Curr. Opin. Cell Biol. 18, 117–124 (2006). [CrossRef]
  8. P.C. De Witt Hamer, S. Leenstra, C. J. Van Noorden, and A. H. Zwinderman, “Organotypic glioma spheroids for screening of experimental therapies: how many spheroids and sections are required?” Cytometry Part A 75, 528–534 (2009). [CrossRef]
  9. J. Poland, P. Sinha, A. Siegert, M. Schnolzer, U. Korf, and S. Hauptmann, “Comparison of protein expression profiles between monolayer and spheroid cell culture of HT-29 cells revealed fragmentation of CK18 in three-dimensional cell culture,” Electrophoresis 23, 1174–1184 (2002). [CrossRef]
  10. K. Dardousis, C. Voolstra, M. Roengvoraphoj, A. Sekandarzad, S. Mesghenna, J. Winkler, Y. Ko, J. Hescheler, and A. Sachinidis, “Identification of differentially expressed genes involved in the formation of multicellular tumor spheroids by HT-29 colon carcinoma cells,” Molec. Ther. 15, 94–102 (2007). [CrossRef]
  11. N. A. L. Cody, M. Zietarska, A. Filali-Mouhim, D. M. Provencher, A. M. Mes-Masson, and P. N. Tonin, “Influence of monolayer, spheroid, and tumor growth conditions on chromosome 3 gene expression in tumorigenic epithelial ovarian cancer cell lines,” BMC Med. Genom. 1, 34 (2008). [CrossRef]
  12. M. Zietarska, C. M. Maugard, A. Filali-Mouhim, M. Alam-Fahmy, P. N. Tonin, D. M. Provencher, and A. M. Mes-Masson, “Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC),” Mol. Carcinog. 46, 872–885 (2007). [CrossRef]
  13. T. T. Chang and M. Hughes-Fulford, “Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes,” Tissue Eng. A 15, 559–567 (2009). [CrossRef]
  14. M. Shimada, Y. Yamashita, S. Tanaka, K. Shirabe, K. Nakazawa, H. Ijima, R. Sakiyama, J. Fukuda, K. Funatsu, and K. Sugimachi, “Characteristic gene expression induced by polyurethane foam/spheroid culture of hepatoma cell line, Hep G2 as a promising cell source for bioartificial liver,” Hepatogastroenterology 54, 814–820 (2007).
  15. Y. Yamashita, M. Shimada, N. Harimoto, S. Tanaka, K. Shirabe, H. Ijima, K. Nakazawa, J. Fukuda, K. Funatsu, and Y. Maehara, “cDNA microarray analysis in hepatocyte differentiation in Huh 7 cells,” Cell transplantation 13, 793–799 (2004). [CrossRef]
  16. L. Gaedtke, L. Thoenes, C. Culmsee, B. Mayer, and E. Wagner, “Proteomic analysis reveals differences in protein expression in spheroid versus monolayer cultures of low-passage colon carcinoma cells,” J. Proteome Res. 6, 4111–4118 (2007). [CrossRef]
  17. A. Frankel, R. Buckman, and R. S. Kerbel, “Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids,” Cancer Res. 57, 2388–2393 (1997).
  18. L. A. Hazlehurst, T. H. Landowski, and W. S. Dalton, “Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death,” Oncogene 22, 7396–7402 (2003). [CrossRef]
  19. I. Serebriiskii, R. Castello-Cros, A. Lamb, E. A. Golemis, and E. Cukierman, “Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells,” Matrix biol. 27, 573–585 (2008). [CrossRef]
  20. L. David, V. Dulong, D. Le Cerf, L. Cazin, M. Lamacz, and J. P. Vannier, “Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity,” Acta Biomater. 4, 256–263 (2008). [CrossRef]
  21. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988). [CrossRef]
  22. G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interf. Sci. 2, 251–257 (1997). [CrossRef]
  23. B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer—application of radiative-transfer solution methods to photon-correlation problems,” J. Thermophys. Heat Transfer 6, 577–588 (1992). [CrossRef]
  24. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorrinowkoorani, and U. Nobbmann, “Correlation transfer—development and application,” J. Quant. Spectrosc. Radiat. Transfer 52, 713–727 (1994). [CrossRef]
  25. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995). [CrossRef]
  26. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010). [CrossRef]
  27. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003). [CrossRef]
  28. D. D. Nolte, Optical Interferometry for Biology and Medicine (Springer, 2012).
  29. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  30. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  31. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  32. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef]
  33. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef]
  34. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by ‘path length encoded’ angular compounding,” J. Biomed. Opt. 8, 260–263 (2003). [CrossRef]
  35. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000). [CrossRef]
  36. C. Joo, C. L. Evans, T. Stepinac, T. Hasan, and J. F. de Boer, “Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering,” Opt. Express 18, 2858–2871 (2010). [CrossRef]
  37. G. Farhat, A. Mariampillai, V. X. D. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting apoptosis using dynamic light scattering with optical coherence tomography,” J. Biomed. Opt. 16, 070505 (2011). [CrossRef]
  38. Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16, 026019 (2011). [CrossRef]
  39. D. D. Nolte, Optical Interferometry for Biology and Medicine (Springer, 2012), Vol. 1, pp. 307–333.
  40. J. J. T. K. Jeong and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15, 14057–14064 (2007). [CrossRef]
  41. R. M. Sutherland, W. R. Inch, J. A. McCredie, and J. Kruuv, “A multicomponent radiation survival curve using an in vitro tumor model,” Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 18, 491–495 (1970). [CrossRef]
  42. L. de Ridder, “Autologous confrontation of brain tumor derived spheroids with human dermal spheroids,” Anticancer Res. 17, 4119–4120 (1997).
  43. K. Groebe ang W. Mueller-Klieser, “On the relation between size of necrosis and diameter of tumor spheroids,” Int. J. Radiat. Oncol. Biol. Phys. 34, 395–401 (1996). [CrossRef]
  44. R. Hamamoto, K. Yamada, M. Kamihira, and S. Iijima, “Differentiation and proliferation of primary rat hepatocytes cultured as spheroids,” J. Biochem. Microbiol. Technol. Eng. 124, 972–979 (1998). [CrossRef]
  45. G. Hamilton, “Multicellular spheroids as an in vitro tumor mode,” Cancer Lett. 131, 29–34 (1998). [CrossRef]
  46. P. Hargrave, P. W. Nicholson, D. T. Delpy, and M. Firbank, “Optical properties of multicellular tumor spheroids,” Phys. Med. Biol. 41, 1067–1072 (1996). [CrossRef]
  47. L. A. Kunz-Schughart, J. Doetsch, W. Mueller-Klieser, K. Groebe, F. Hofstaedter, and R. Ebner, “Proliferative activity and tumorigenic conversion: impact on cellular metabolism in 3-D culture,” Am. J. Physiol. Cell Physiol. 278, C765–C780 (2000).
  48. L. A. Kunz-Schughart, J. P. Freyer, F. Hofstaedter, and R. Ebner, “The use of 3-D cultures for high-throughput screening: the multicellular spheroid model,” J. Biomol. Sceening 9, 273–285 (2004). [CrossRef]
  49. J. Rygaard and C. O. Povlsen, “Heterotransplantation of a human malignant tumour to ‘nude’ mice,” Acta Pathol. Microbiol. Scand. 77, 758–760 (1969). [CrossRef]
  50. O. J. Becher and E. C. Holland, “Genetically engineered models have advantages over xenografts for preclinical studies,” Cancer Res. 66, 3355–3359 (2006). [CrossRef]
  51. M. Suggitt and M. C. Bibby, “50 years of preclinical anticancer drug screening: empirical to target-driven approaches,” Clin. Cancer Res. 11, 971–981 (2005).
  52. L. T. K. Jin, Y. Shen, K. He, Z. Xu, and G. Li, “Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review,” Clin. Trans. Oncol. 12, 473–480 (2010). [CrossRef]
  53. H. H. Fiebig and A. M. Burger, “Human tumor xenografts and explants,” in Tumor Models in Cancer Research, B. A. Teicher, ed. (Humana, 2001), pp. 113–137.
  54. H. M. F. Hirschhaeuser, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148, 3–15 (2010). [CrossRef]
  55. P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003). [CrossRef]
  56. P. Yu, M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43, 4862–4873 (2004). [CrossRef]
  57. K. Jeong, L. Peng, D. D. Nolte, and M. R. Melloch, “Fourier-domain holography in photorefractive quantum-well films,” Appl. Opt. 43, 3802–3811 (2004). [CrossRef]
  58. K. Jeong, L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye,” Appl. Opt. 44, 1798–1805 (2005). [CrossRef]
  59. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46, 4999–5008 (2007). [CrossRef]
  60. E. Oikonomou, M. Koc, V. Sourkova, L. Andera, and A. Pintzas, “Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance,” Plos One 6, e21632 (2011). [CrossRef]
  61. W. De Roock, V. De Vriendt, N. Normanno, F. Ciardiello, and S. Tejpar, “KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer,” Lancet Oncol. 12, 594–603 (2011). [CrossRef]
  62. E. Vakiani and D. B. Solit, “KRAS and BRAF: drug targets and predictive biomarkers,” J. Pathol. 223, 220–230 (2011). [CrossRef]
  63. A. A. Yunis, “Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase,” Int. J. Cancer 19, 128–135 (1977). [CrossRef]
  64. V. Guarneri, F. Piacentini, E. Barbieri, and P. F. Conte, “Achievements and unmet needs in the management of advanced ovarian cancer,” Gynecol. Oncol. 117, 152–158 (2010). [CrossRef]
  65. H. Neubauer, M. Stefanova, E. Solomayer, C. Meisner, M. Zwirner, D. Wallwiener, and T. Fehm, “Predicting resistance to chemotherapy with the ATP tumor chemosensitivity assay in primary ovarian cancer,” Anticancer Res. 28, 949–955 (2008). [CrossRef]
  66. M. Markman, “Counterpoint: chemosensitivity assays for recurrent ovarian cancer,” J. Natl. Compr. Cancer Network 9, 121–124 (2011).
  67. T. J. Herzog, T. C. Krivak, A. N. Fader, and R. L. Coleman, “Chemosensitivity testing with ChemoFx and overall survival in primary ovarian cancer,” Am. J. Obstet. Gynecol. 203, 68.e1–68.e6 (2010). [CrossRef]
  68. I. A. Cree, “Chemosensitivity and chemoresistance testing in ovarian cancer,” Curr. Opin. Obstet. Gynecol. 21, 39–43 (2009). [CrossRef]
  69. R. J. Parker, A. Eastman, F. Bostick-Bruton, and E. Reed, “Acquired cisplatin resistance in human ovarian-cancer cell is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation,” J. Clin. Invest. 87, 772–777 (1991). [CrossRef]
  70. R. Parker, I. Dimery, M. Dabholkar, J. Vionnet, and E. Reed, “Platinum-DNA adduct in head and neck-cancer patients receiving cisplatin and carboplatin chemotherapy,” Int. J. Oncol. 3, 331–335 (1993).
  71. M. Satpathy, L. Cao, R. Pincheira, R. Emerson, R. Bigsby, H. Nakshatri, and D. Matei, “Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase,” Cancer Res. 67, 7194–7202 (2007). [CrossRef]
  72. T. J. Shaw, M. K. Senterman, K. Dawson, C. A. Crane, and B. C. Vanderhyden, “Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer,” Molec. Ther. 10, 013 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited