OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Generalized ocean color inversion model for retrieving marine inherent optical properties

P. Jeremy Werdell, Bryan A. Franz, Sean W. Bailey, Gene C. Feldman, Emmanuel Boss, Vittorio E. Brando, Mark Dowell, Takafumi Hirata, Samantha J. Lavender, ZhongPing Lee, Hubert Loisel, Stéphane Maritorena, Fréderic Mélin, Timothy S. Moore, Timothy J. Smyth, David Antoine, Emmanuel Devred, Odile Hembise Fanton d’Andon, and Antoine Mangin  »View Author Affiliations


Applied Optics, Vol. 52, Issue 10, pp. 2019-2037 (2013)
http://dx.doi.org/10.1364/AO.52.002019


View Full Text Article

Enhanced HTML    Acrobat PDF (2614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 20, 2012
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 11, 2013
Published: March 22, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
P. Jeremy Werdell, Bryan A. Franz, Sean W. Bailey, Gene C. Feldman, Emmanuel Boss, Vittorio E. Brando, Mark Dowell, Takafumi Hirata, Samantha J. Lavender, ZhongPing Lee, Hubert Loisel, Stéphane Maritorena, Fréderic Mélin, Timothy S. Moore, Timothy J. Smyth, David Antoine, Emmanuel Devred, Odile Hembise Fanton d’Andon, and Antoine Mangin, "Generalized ocean color inversion model for retrieving marine inherent optical properties," Appl. Opt. 52, 2019-2037 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-10-2019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group No. 5 (IOCCG, 2006).
  2. P. J. Werdell, “Global bio-optical algorithms for ocean color satellite applications,” EOS Trans. AGU 90, 4 (2009). [CrossRef]
  3. C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995). [CrossRef]
  4. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996). [CrossRef]
  5. S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997). [CrossRef]
  6. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000). [CrossRef]
  7. Z.-P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  8. S. Maritorena, D. A. Siegel, and A. Peterson, “Optimization of a semi-analytic ocean color model for global scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef]
  9. P. Wang, E. Boss, and C. S. Roesler, “Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005). [CrossRef]
  10. E. Devred, S. Sathyendranath, and T. Platt, “Inversion based on a semi-analytical reflectance model,” in Reports of the International Ocean-Colour Coordinating Group No. 5, Z.-P. Lee, ed. (IOCCG, 2006), pp. 87–94.
  11. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45, 8116–8131 (2006). [CrossRef]
  12. C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS Project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. II 51, 5–42 (2004). [CrossRef]
  13. B. A. Franz and P. J. Werdell, “A generalized framework for modeling of inherent optical properties in ocean remote sensing applications,” in Proceedings of Ocean Optics, Anchorage, Alaska, 27 September–1 October 2010, 2010.
  14. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998). [CrossRef]
  15. A. M. Ciotti, J. J. Cullen, and M. R. Lewis, “A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color,” J. Geophys. Res. 104, 1559–1578 (1999). [CrossRef]
  16. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001). [CrossRef]
  17. A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. 4, 237–253 (2006). [CrossRef]
  18. A. Magnuson, L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the middle Atlantic bight,” Estuar. Coast. Shelf. Sci. 61, 403–424 (2004). [CrossRef]
  19. B. A. Franz, “l2gen: the Multi-Sensor Level-1 to Level-2 Generator,” http://oceancolor.gsfc.nasa.gov/WIKI/OCSSW(2f)l2gen.html (2010).
  20. K. Baith, R. Lindsay, G. Fu, and C. R. McClain, “Data analysis system developed for ocean color satellite sensors,” EOS. Trans. AGU 82, 202 (2001). [CrossRef]
  21. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  22. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002). [CrossRef]
  23. Z.-P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50, 3155–3167 (2011). [CrossRef]
  24. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989). [CrossRef]
  25. A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986). [CrossRef]
  26. D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54, 1257–1271 (2009). [CrossRef]
  27. W. H. Slade, E. Boss, and C. Russo, “Effects of particle aggregation and disaggregation on their inherent optical properties,” Opt. Express 19, 7945–7959 (2011). [CrossRef]
  28. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  29. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009). [CrossRef]
  30. S. Sugihara and M. Kishino, “An algorithm for estimating the water quality parameters from irradiance just below the sea surface,” J. Geophys. Res. 93, 10857–10862 (1988). [CrossRef]
  31. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  32. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005). [CrossRef]
  33. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ 102, 12–23 (2006). [CrossRef]
  34. B. A. Franz, “NASA ocean color data reprocessing,” http://oceancolor.gsfc.nasa.gov/WIKI/OCReproc.html (2010).
  35. P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” EOS Trans. AGU 84, 377 (2003). [CrossRef]
  36. K. E. Taylor, “Summarizing multiple aspects of model performance in a single diagram,” J. Geophys. Res. 106, 7183–7192 (2001). [CrossRef]
  37. J. K. Jolliff, J. C. Kindle, I. Shulman, B. Penta, M. A. M. Friedrichs, R. Helber, and R. A. Arnone, “Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment,” J. Mar. Syst. 76, 64–82 (2009). [CrossRef]
  38. Z. P. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010). [CrossRef]
  39. V. E. Brando, A. G. Dekker, Y. J. Park, and T. Schroeder, “Adaptive semianalytic inversion of ocean color radiometry in optically complex waters,” Appl. Opt. 51, 2808–2833 (2012). [CrossRef]
  40. P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua,” Remote Sens. Environ. 113, 1319–1330 (2009). [CrossRef]
  41. R. J. W. Brewin, S. Sathyendranath, D. Müeller, C. Brockmann, P.-Y. Deschamps, E. Devred, R. Doerffer, N. Fomferra, B. Franz, M. Grant, S. Groom, A. Horseman, C. Hu, H. Krasemann, Z.-P. Lee, S. Maritorena, F. Mélin, M. Peters, T. Platt, P. Regner, T. Smyth, F. Steinmetz, J. Swinton, J. Werdell, and G. N. White, “The ocean colour climate change initiative: a round-robin comparison of in-water bio-optical algorithms,” Rem. Sens. Environ. (2012) (to be published).
  42. M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156–2162 (2004). [CrossRef]
  43. M. Defoin-Platel and M. Chami, “How ambiguous is the inverse problem of ocean color in coastal waters?” J. Geophys. Res. 112, C03004 (2007). [CrossRef]
  44. R. J. W. Brewin, E. Devred, S. Sathyendranath, S. J. Lavender, and N. J. Hardman-Mountford, “Model of phytoplankton absorption based on three size classes,” Appl. Opt. 50, 4535–4549 (2011). [CrossRef]
  45. T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424–2430 (2009). [CrossRef]
  46. H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18, 20949–20959 (2010). [CrossRef]
  47. M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?,” J. Geophys. Res. 116, C00H04 (2011). [CrossRef]
  48. M. J. Sauer, C. S. Roesler, P. J. Werdell, and A. Barnard, “Under the hood of satellite empirical chlorophyll-a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties,” Opt. Express 20, 20920–20933 (2012). [CrossRef]
  49. V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of constrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012). [CrossRef]
  50. M. L. Estapa, “Photochemical reactions of particulate organic matter,” Ph.D. dissertation (University of Maine, 2011).
  51. S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characteristics, benefits, and uses,” Rem. Sens. Environ. 114, 1791–1804 (2010). [CrossRef]
  52. F. Mélin, G. Zibordi, and S. Djavidnia, “Merged series of normalized water leaving radiances obtained from multiple satellite missions for the Mediterranean Sea,” Adv. Space Res. 43, 423–437 (2009). [CrossRef]
  53. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18, 7521–7527 (2010). [CrossRef]
  54. G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Remote Sens. 50, 310–319 (2012). [CrossRef]
  55. F. Mélin, G. Zibordi, and J. F. Berthon, “Assessment of satellite ocean color products at a coastal site,” Remote Sens. Environ. 110, 192–215 (2007). [CrossRef]
  56. G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 624–636 (2012). [CrossRef]
  57. M. H. Pinkerton, G. F. Moore, S. J. Lavender, M. P. Gall, K. Oubelkheir, K. M. Richardson, P. W. Boyd, and J. Aiken, “A method for estimating inherent optical properties of New Zealand continental shelf waters from satellite ocean colour measurements,” N. Z. J. Mar. Freshwater Res. 40, 227–247 (2006). [CrossRef]
  58. E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111, C03011 (2006). [CrossRef]
  59. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984). [CrossRef]
  60. H. Loisel, J.-M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited