OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Accurate measurements of the Raman scattering coefficient and the depolarization ratio in liquid water

Andrew Bray, Robert Chapman, and Taras Plakhotnik  »View Author Affiliations


Applied Optics, Vol. 52, Issue 11, pp. 2503-2510 (2013)
http://dx.doi.org/10.1364/AO.52.002503


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Despite a long history, the Raman scattering coefficient of water has so far only been measured with 10% uncertainty using a 95% confidence interval. In this paper, we present an experiment where we have achieved 1.5% uncertainty by using a low concentration of Rhodamine 6G in ethanol as a reference along with accurate consideration of polarization-related effects and the geometry of the experimental setup. We have found that the photon-to-photon Raman scattering coefficient of the OH stretching band of liquid water is (1.84±0.03)×104m1 when integrated over the spectral frequency range from 620 to 700 nm while the exciting laser operates at 532 nm. We have also accurately measured the depolarization ratio across this band.

© 2013 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(190.5650) Nonlinear optics : Raman effect
(290.0290) Scattering : Scattering
(290.5820) Scattering : Scattering measurements
(290.5860) Scattering : Scattering, Raman

ToC Category:
Scattering

History
Original Manuscript: December 14, 2012
Revised Manuscript: March 6, 2013
Manuscript Accepted: March 6, 2013
Published: April 10, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Andrew Bray, Robert Chapman, and Taras Plakhotnik, "Accurate measurements of the Raman scattering coefficient and the depolarization ratio in liquid water," Appl. Opt. 52, 2503-2510 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-11-2503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef]
  2. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  3. T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004). [CrossRef]
  4. S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–403 (1984). [CrossRef]
  5. R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988). [CrossRef]
  6. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical-models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef]
  7. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000). [CrossRef]
  8. Y. Ge, H. R. Gordon, and K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993). [CrossRef]
  9. S. A. Corcelli and J. L. Skinner, “Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90°C,” J. Phys. Chem. A 109, 6154–6165 (2005). [CrossRef]
  10. H. Torii, “Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water,” J. Phys. Chem. A 110, 9469–9477 (2006). [CrossRef]
  11. B. M. Auer and J. L. Skinner, “IR and Raman spectra of liquid water: theory and interpretation,” J. Chem. Phys. 128, 224511 (2008). [CrossRef]
  12. V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000). [CrossRef]
  13. R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010). [CrossRef]
  14. R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005). [CrossRef]
  15. X. Zheng, W. Fu, S. Albin, K. L. Wise, A. Javey, and J. B. Cooper, “Self-referencing Raman probes for quantitative analysis,” Appl. Spectrosc. 55, 382–388 (2001). [CrossRef]
  16. C. Veas, and J. L. McHale, “Solvent effects on preresonance Raman scattering in TCNQ solutions,” J. Phys. Chem. 94, 2794–2800 (1990). [CrossRef]
  17. C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).
  18. G. W. Faris and R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997). [CrossRef]
  19. J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998). [CrossRef]
  20. R. A. Desiderio, “Application of the Raman scattering coefficient of water to calculations in marine optics,” Appl. Opt. 39, 1893–1894 (2000). [CrossRef]
  21. B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990). [CrossRef]
  22. W. K. Bischel, and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, 1983), pp. 181–187.
  23. R. L. McCreery, “Photometric standards for Raman spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).
  24. D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002). [CrossRef]
  25. C. von Grundherr, and M. Stockburger, “Quantum yield of resonance Raman scattering in the case of 1, 1, 14, 14, tetraphenyltetradecaheptaene,” Chem. Phys. Lett. 22, 253–256 (1973). [CrossRef]
  26. M. Fischer, and J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry,” Chem. Phys. Lett. 260, 115–118 (1996). [CrossRef]
  27. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (CRC/Chapman & Hall, 2003).
  28. M. Tanaka and R. J. Young, “Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006). [CrossRef]
  29. D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).
  30. S. P. S. Porto, “Angular dependence and depolarization ratio of the Raman effect,” J. Opt. Soc. Am. 56, 1585–1589 (1966). [CrossRef]
  31. T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995). [CrossRef]
  32. S. Inoue and W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces: II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. Cytol. 3, 831–838 (1957). [CrossRef]
  33. D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998). [CrossRef]
  34. A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987). [CrossRef]
  35. G. E. Walrafen and L. A. Blatz, “Weak Raman bands from water,” J. Chem. Phys. 59, 2646 (1973). [CrossRef]
  36. M. Moskovits and K. H. Michaelian, “Reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978). [CrossRef]
  37. Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003). [CrossRef]
  38. N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spektrosk. 38, 646–648 (1975).
  39. K. Cunningham and P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973). [CrossRef]
  40. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986). [CrossRef]
  41. F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited