OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Numerical simulation of digital holographic microscopy through transparent samples based on pupil imaging and finite-difference time-domain methods

Hirotaka Hadachi and Takashi Saito  »View Author Affiliations

Applied Optics, Vol. 52, Issue 12, pp. 2694-2705 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Digital holographic microscopy (DHM) has been used to determine the morphology and shape of transparent objects. However, the obtained shape is often inaccurate depending on the object properties and the setup of the optical imaging system. To understand these effects, we developed a new DHM model on the basis of a hybrid pupil imaging and finite-difference time-domain method. To demonstrate this model, we compared the results of an experiment with those of a simulation using borosilicate glass microspheres and a mold with a linear step structure. The simulation and experimental results showed good agreement. We also showed how the curvature and refractive index of objects affect the accuracy of thickness measurements.

© 2013 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: January 7, 2013
Manuscript Accepted: March 3, 2013
Published: April 16, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Hirotaka Hadachi and Takashi Saito, "Numerical simulation of digital holographic microscopy through transparent samples based on pupil imaging and finite-difference time-domain methods," Appl. Opt. 52, 2694-2705 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  2. I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. Royal Soc. Interface 4, 305–313 (2007). [CrossRef]
  3. P. Marquet, B. Rappaz, and P. J. Magistretti, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef]
  4. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006). [CrossRef]
  5. P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009). [CrossRef]
  6. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008). [CrossRef]
  7. J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012). [CrossRef]
  8. G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004). [CrossRef]
  9. Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005). [CrossRef]
  10. P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008). [CrossRef]
  11. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
  12. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef]
  13. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006). [CrossRef]
  14. B. Salski and W. Gwarek, “Hybrid finite-difference time-domain Fresnel modeling of microscopy imaging,” Appl. Opt. 48, 2133–2138 (2009). [CrossRef]
  15. B. Salski and W. Gwarek, “Hybrid FDTD-Fresnel modeling of the scanning confocal microscopy,” Proc. SPIE 7378, 737826 (2009). [CrossRef]
  16. I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “The microscope in an computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s Equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Vol. 57, Chap. 1.
  17. J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, “Computational microscopy in embryo imaging,” Opt. Lett. 29, 2267–2269 (2004). [CrossRef]
  18. S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008). [CrossRef]
  19. O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008). [CrossRef]
  20. S. V. Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A 26, 1221–1234 (2009).
  21. I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Lett. 36, 1596–1598 (2011). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000), pp. 175–224.
  23. A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002). [CrossRef]
  24. S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011). [CrossRef]
  25. A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007). [CrossRef]
  26. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000). [CrossRef]
  27. C. A. Balanis, Modern Antenna Handbook (Wiley, 2008), pp. 1499–1502.
  28. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited