OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons

Goro Terakado, Jun Ning, Koyo Watanabe, and Hiroshi Kano  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3324-3328 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a localized surface plasmon microscope that provides simultaneous imaging of refractive index and fluorescent intensity distributions. We show experimental images of fluorescent and transparent particles under circular pupil illumination to confirm simultaneous high-resolution imaging. Furthermore, we investigate applicability of annular pupil illumination employing two axicons to improve energy efficiency in the fluorescent imaging and find that a brighter image is obtainable by maintaining high spatial resolution for both imaging modes.

© 2013 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Surface Plasmons

Original Manuscript: January 17, 2013
Revised Manuscript: March 5, 2013
Manuscript Accepted: March 12, 2013
Published: May 7, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Goro Terakado, Jun Ning, Koyo Watanabe, and Hiroshi Kano, "High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons," Appl. Opt. 52, 3324-3328 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).
  2. S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79, 1655–1669 (2000). [CrossRef]
  3. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection,” Opt. Lett. 28, 1930–1932 (2003). [CrossRef]
  4. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063–1071 (2004). [CrossRef]
  5. G. Terakado, K. Watanabe, and H. Kano, “Scanning total internal reflection fluorescence microscopy with improved imaging properties by using radial polarization in the illumination system,” Appl. Opt. 48, 1114–1118 (2009). [CrossRef]
  6. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998). [CrossRef]
  7. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000). [CrossRef]
  8. K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46, 4985–4990 (2007). [CrossRef]
  9. K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt. 49, 887–891 (2010). [CrossRef]
  10. K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers,” Biomed. Opt. Express 3, 2012–2020 (2012). [CrossRef]
  11. C. H. Sung, D. Chauvat, J. Zyss, and C. K. Lee, “Enhanced detection of fluorescent nanospheres using two-channel radially polarized surface plasmon microscopy,” Opt. Lett. 35, 2873–2875 (2010). [CrossRef]
  12. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000). [CrossRef]
  13. T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002). [CrossRef]
  14. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16, 20734–20741 (2008). [CrossRef]
  15. K.-C. Chiu, C.-Y. Lin, C. Y. Dong, and S.-J. Chen, “Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging,” Opt. Express 19, 5386–5396 (2011). [CrossRef]
  16. D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010). [CrossRef]
  17. D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010). [CrossRef]
  18. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35, 517–519 (2010). [CrossRef]
  19. D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009). [CrossRef]
  20. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  22. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211–216 (1995). [CrossRef]
  23. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited