OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Optical coherence tomography for vulnerability assessment of sandstone

Elizabeth Bemand and Haida Liang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3387-3393 (2013)
http://dx.doi.org/10.1364/AO.52.003387


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sandstone is an important cultural heritage material, in both architectural and natural settings, such as neolithic rock art panels. The majority of deterioration effects in porous materials such as sandstone are influenced by the presence and movement of water through the material. The presence of water within the porous network of a material results in changes in the optical coherence tomography signal intensity that can be used to monitor the wetting front of water penetration of dry porous materials at various depths. The technique is able to detect wetting front velocities from 1cms1 to 106cms1, covering the full range of hydraulic conductivities likely to occur in natural sandstones from pervious to impervious.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing

ToC Category:
Imaging Systems

History
Original Manuscript: February 5, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 17, 2013
Published: May 9, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics
May 21, 2013 Spotlight on Optics

Citation
Elizabeth Bemand and Haida Liang, "Optical coherence tomography for vulnerability assessment of sandstone," Appl. Opt. 52, 3387-3393 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-14-3387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Doehne and C. A. Price, Stone Conservation an Overview of Current Research (Getty Conservation Institute, 2010).
  2. H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010). [CrossRef]
  3. B. Fitzner, K. Heinrichs, and D. La Bouchardiere, “Weathering damage on Pharonic sandstone monuments in Luxor-Egypt,” Build. Environ. 38, 1089–1103 (2003). [CrossRef]
  4. A. V. Turkington and T. R. Paradise, “Sandstone weathering: a century of research and innovation,” Geomorphology 67, 229–253 (2005). [CrossRef]
  5. R. A. L. Wray, “A global review of solutional weathering forms on quartz sandstones,” Earth-Sci. Rev. 42, 137–160 (1997). [CrossRef]
  6. Th. Warscheid and J. Braams, “Biodeterioration of stone: a review,” Int. Biodeterior. Biodegrad. 46, 343–368 (2000). [CrossRef]
  7. E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011). [CrossRef]
  8. O. Sass and H. A. Viles, “Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK,” J. Appl. Geophys. 70, 72–83 (2010). [CrossRef]
  9. A. T. Watson and C. T. P. Chang, “Characterizing porous media with NMR methods,” Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997). [CrossRef]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  11. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).
  12. H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004). [CrossRef]
  13. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005). [CrossRef]
  14. P. Targowski and M. Iwanicka, “Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106, 265–277 (2012). [CrossRef]
  15. H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008). [CrossRef]
  16. URL: http://www.oct4art.eu .
  17. M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).
  18. S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010). [CrossRef]
  19. M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13, 021111 (2008). [CrossRef]
  20. M. G. Ghosn, E. F. Carbajal, and N. A. Befrui, “Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera,” J. Biomed. Opt. 13, 021110 (2008). [CrossRef]
  21. H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009). [CrossRef]
  22. A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  23. J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, 1972).
  24. A. J. Katz and A. H. Thompson, “Quantitative prediction of permeability in porous rock,” Phys. Rev. B 34, 8179–8181 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3460 KB)     
» Media 2: AVI (3460 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited