OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics

Rudeger H. T. Wilke, Raegan L. Johnson-Wilke, Vincenzo Cotroneo, William N. Davis, Paul B. Reid, Daniel A. Schwartz, and Susan Trolier-McKinstry  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3412-3419 (2013)
http://dx.doi.org/10.1364/AO.52.003412


View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Piezoelectric PbZr0.52Ti0.48O3 (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1cm2 electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26μC/cm2 with coercive fields of 33kV/cm. The transverse piezoelectric coefficient was as high as 6.1±0.6C/m2. To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

© 2013 Optical Society of America

OCIS Codes
(160.2260) Materials : Ferroelectrics
(340.7470) X-ray optics : X-ray mirrors

ToC Category:
X-ray Optics

History
Original Manuscript: January 8, 2013
Revised Manuscript: April 7, 2013
Manuscript Accepted: April 9, 2013
Published: May 10, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Rudeger H. T. Wilke, Raegan L. Johnson-Wilke, Vincenzo Cotroneo, William N. Davis, Paul B. Reid, Daniel A. Schwartz, and Susan Trolier-McKinstry, "Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics," Appl. Opt. 52, 3412-3419 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-14-3412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004). [CrossRef]
  2. P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010). [CrossRef]
  3. R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011). [CrossRef]
  4. P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008). [CrossRef]
  5. P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review,” J. Micromech. Microeng. 10, 136–146 (2000). [CrossRef]
  6. I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007). [CrossRef]
  7. E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006). [CrossRef]
  8. N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003). [CrossRef]
  9. F. Calame and P. Muralt, “Growth and properties of gradient free sol-gel lead zirconate titanate thin films,” Appl. Phys. Lett. 90, 062907 (2007). [CrossRef]
  10. C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1−xO3 thin films,” J. Mater. Res. 9, 1728–1733 (1994). [CrossRef]
  11. Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films,” J. Appl. Phys. 86, 1662–1669 (1999). [CrossRef]
  12. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992). [CrossRef]
  13. K. Amanuma, T. Hase, and Y. Miyasaka, “Crystallization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure,” Appl. Phys. Lett. 65, 3140–3142 (1994). [CrossRef]
  14. A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994). [CrossRef]
  15. C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin-films by a seeding process,” J. Mater. Res. 8, 339–344 (1993). [CrossRef]
  16. R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010). [CrossRef]
  17. A. Karuppasamy and A. Subrahmanyam, “Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas,” J. Appl. Phys. 101, 064318 (2007). [CrossRef]
  18. H. Hu, C. J. Peng, and S. B. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin-films,” Thin Solid Films 223, 327–333 (1993). [CrossRef]
  19. S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000). [CrossRef]
  20. R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.
  21. K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).
  22. K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997). [CrossRef]
  23. S. M. Nam and T. Tsurumi, “In situ epitaxial growth of lead zirconate titanate films by bias sputtering at high RF power,” Jpn. J. Appl. Phys. 43, 2672–2676 (2004). [CrossRef]
  24. I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997). [CrossRef]
  25. K. Sreenivas and M. Sayer, “Characterization of Pb(Zr,Ti)O3 thin-films deposited from multi-element targets,” J. Appl. Phys. 64, 1484–1493 (1988). [CrossRef]
  26. L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, 1970).
  27. D. J. Kester, and R. Messier, “Predicting negative-ion resputtering in thin-films,” J. Vac. Sci. Technol. A 4, 496–499 (1986). [CrossRef]
  28. M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989). [CrossRef]
  29. M. Migliuolo, R. M. Belan, and J. A. Brewer, “Absence of negative-ion effects during on-axis single target sputtering of Y-Ba-Cu-O thin-films on Si (100),” Appl. Phys. Lett. 56, 2572–2574 (1990). [CrossRef]
  30. A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994). [CrossRef]
  31. K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986). [CrossRef]
  32. A. Grasmarti and J. A. Vallesabarca, “Slowing down and thermalization of sputtered particle fluxes—energy-distributions,” J. Appl. Phys. 54, 1071–1075 (1983). [CrossRef]
  33. G. L. Brennecka and B. A. Tuttle, “Fabrication of ultrathin film capacitors by chemical solution deposition,” J. Mater. Res. 22, 2868–2874 (2007). [CrossRef]
  34. T. Tani and D. A. Payne, “Lead-oxide coatings on sol gel-derived lead lanthanum zirconium titanate thin-layers for enhanced crystallization into the perovskite structure,” J. Am. Ceram. Soc. 77, 1242–1248 (1994). [CrossRef]
  35. E. K. W. Goo, R. K. Mishra, and G. Thomas, “Transmission electron-microscopy of Pb(Zr0.52Ti0.48)O3,” J. Am. Ceram. Soc. 64, 517–519 (1981). [CrossRef]
  36. K. H. Hardtl and H. Rau, “PbO vapour pressure in Pb(Ti1−xZrx)O3 system,” Solid State Commun. 7, 41–45 (1969). [CrossRef]
  37. A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).
  38. N. J. Donnelly and C. A. Randall, “Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements,” J. Appl. Phys. 109, 104107 (2011). [CrossRef]
  39. S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009). [CrossRef]
  40. B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.
  41. R. C. Keezer, D. L. Bowman, and J. H. Becker, “Electrical and optical properties of lead oxide single crystals,” J. Appl. Phys. 39, 2062–2066 (1968). [CrossRef]
  42. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic, 1971).
  43. A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991). [CrossRef]
  44. I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994). [CrossRef]
  45. G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008). [CrossRef]
  46. J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,” Sens. Actuators A 71, 133–138 (1998). [CrossRef]
  47. W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010). [CrossRef]
  48. SDRC I-DEAS, Now Siemens PLM Software, 5800 Granite Parkway Suite 600, Plano, TX 75024.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited