OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Optical trapping map of dielectric spheres

Murat Muradoglu and Tuck Wah Ng  »View Author Affiliations

Applied Optics, Vol. 52, Issue 15, pp. 3500-3509 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many applications use a focused Gaussian laser beam to manipulate spherical dielectric particles. The axial trapping efficiency of this process is a function of (i) the particle radius r, (ii) the ratio of the refractive index of particle over the medium, and (iii) the numerical aperture of the delivered light beam. During what we believe is the first comprehensive simulation of its kind, we uncovered optical trapping regions in the three-dimensional (3D) parameter space forming an iso-surface landscape with ridge-like contours. Using specific points in the parameter space, we drew attention to difficulties in using the trapping efficiency and stiffness metrics in defining how well particles are drawn into and held in the trap. We have proposed an alternative calculation based on the maximum forward and restoration values of the trapping efficiency in the axial sense, called the trapping quality. We also discuss the manner in which the ridge regions may be harnessed for effective particle sorting, how the optical trapping blind spots can be used in applications that seek to eschew photothermal damage, and how trapping can proceed when many parameters change, such as when swelling occurs.

© 2013 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 10, 2013
Revised Manuscript: March 11, 2013
Manuscript Accepted: April 8, 2013
Published: May 15, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Murat Muradoglu and Tuck Wah Ng, "Optical trapping map of dielectric spheres," Appl. Opt. 52, 3500-3509 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  3. I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Gluckstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A 11, 034013 (2009). [CrossRef]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003). [CrossRef]
  5. M. Polin, Y. Roichman, and D. G. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008). [CrossRef]
  6. A. Neild, T. W. Ng, and W. M. Yii, “Optical sorting of dielectric Rayleigh spherical particles with scattering and standing waves,” Opt. Express 17, 5321–5329 (2009). [CrossRef]
  7. N. Hyun, C. Chandsawangbhuwana, Q. Zhu, L. Z. Shi, C. Yang-Wong, and M. W. Berns, “Effects of viscosity on sperm motility studied with optical tweezers,” J. Biomed. Opt. 17, 025005 (2012). [CrossRef]
  8. P. A. M. Neto and H. M. Nussenzveig, “Theory of optical tweezers,” Europhys. Lett. 50, 702–708 (2000). [CrossRef]
  9. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007). [CrossRef]
  10. M. J. Kendrick, D. H. McIntyre, and O. Ostroverkhova, “Wavelength dependence of optical tweezer trapping forces on dye-doped polystyrene microspheres,” J. Opt. Soc. Am. B 26, 2189–2198 (2009). [CrossRef]
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  12. A. B. Stilgoe, T. A. Nieminen, G. Knoner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16, 15039–15051 (2008). [CrossRef]
  13. K. J. Knox, D. R. Burnham, L. I. McCann, S. L. Murphy, D. McGloin, and J. P. Reid, “Observation of bistability of trapping position in aerosol optical tweezers,” J. Opt. Soc. Am. B 27, 582–591 (2010). [CrossRef]
  14. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]
  15. E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009). [CrossRef]
  16. P. Chýlek and J. Zhan, “Interference structure of the Mie extinction cross section,” J. Opt. Soc. Am. A 6, 1846–1851 (1989). [CrossRef]
  17. B. Sun and D. G. Grier, “The effect of Mie resonances on trapping in optical tweezers: comment,” Opt. Express 17, 2658–2660 (2009). [CrossRef]
  18. Simulator for the optical trapping of spherical dielectric particles. www.biofuturex.com/LOAM/index-resource.html .
  19. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  20. M. Bier, I. Derenyi, M. Kostur, and R. D. Astumian, “Intrawell relaxation of overdamped Brownian particles,” Phys. Rev. E 59, 6422–6432 (1999). [CrossRef]
  21. M. Muradoglu, W. S.-Y. Chiu, and T. W. Ng, “Optical force lateral push–pulling using focus positioning,” J. Opt. Soc. Am. B 29, 874–880 (2012). [CrossRef]
  22. M. Muradoglu, T. Le, C. Y. Lau, O. W. Liew, and T. W. Ng, “Optical stirring in a droplet cell bioreactor,” Biomed. Opt. Express 3, 2465–2470 (2012). [CrossRef]
  23. J.-P. Matas, J. F. Morris, and E. Guazzelli, “Inertial migration of rigid spherical particles in Poiseuille flow,” J. Fluid Mech. 515, 171–195 (2004). [CrossRef]
  24. D. DiCarlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. USA. 104, 18892–18897 (2007). [CrossRef]
  25. J. Koo and C. Kleinstreuer, “Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects,” J. Micromech. Microeng. 13, 568–579 (2003). [CrossRef]
  26. Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: design and fabrication,” Opt. Commun. 285, 4068–4071 (2012). [CrossRef]
  27. T. W. Ng, A. Neild, and P. Heeraman, “Continuous and fast sorting of Brownian particles,” Opt. Lett. 33, 584–586 (2008). [CrossRef]
  28. P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008). [CrossRef]
  29. K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007). [CrossRef]
  30. K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996). [CrossRef]
  31. Y. N. Dai, P. Li, J. P. Zhang, A. Q. Wang, and Q. Wei, “Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads,” J. Biomed. Mater. Res. B Appl. Biomater. 86, 493–500 (2008). [CrossRef]
  32. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams II: partial polarization,” Opt. Express 20, 9357–9362 (2012). [CrossRef]
  33. E. Madadi, A. Samadi, M. Cheraghian, and S. N. S. Reihani, “Polarization-induced stiffness asymmetry of optical tweezers,” Opt. Lett. 37, 3519–3521 (2012). [CrossRef]
  34. G.-B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16, 1996–2004 (2008). [CrossRef]
  35. Y.-X. Ren, J.-G. Wu, M.-C. Zhong, and Y.-M. Li, “Monte Carlo simulation of effective stiffness of time-sharing optical tweezers,” Chin. Opt. Lett. 8, 170–172 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited