Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetically induced grating based on the giant Kerr nonlinearity controlled by spontaneously generated coherence

Not Accessible

Your library or personal account may give you access

Abstract

We propose a scheme for realizing electromagnetically induced grating via the giant Kerr nonlinearity in a coherently driven four-level system with spontaneously generated coherence. In the presence of spontaneously generated coherence, Kerr nonlinearity can be enhanced with vanishing linear absorption. Thus, with a standing-wave coupling field, one can achieve a pure absorption grating, which leads the probe field to gather the zero-order direction when the detuning of the coupling field is on resonance. Moreover, we can obtain a pure phase grating, which diffracts a weak probe light into the first-order direction and the second-order direction when the detuning of the coupling field is off resonance.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetically induced grating in the microwave-driven four-level atomic systems

Rasoul Sadighi-Bonabi, Tayebeh Naseri, and Morteza Navadeh-Toupchi
Appl. Opt. 54(3) 368-377 (2015)

Enhanced self-Kerr nonlinearity in spontaneous emission

Xiang-an Yan, Li-qiang Wang, Bao-yin Yin, and Jian-ping Song
J. Opt. Soc. Am. B 26(10) 1862-1868 (2009)

Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system

Tayebeh Naseri and Rasoul Sadighi-Bonabi
J. Opt. Soc. Am. B 31(11) 2879-2884 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved