OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Imaging interferometry to measure surface rotation field

Thomas Travaillot, Søren Dohn, Anja Boisen, and Fabien Amiot  »View Author Affiliations

Applied Optics, Vol. 52, Issue 18, pp. 4360-4369 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (909 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a polarized-light imaging interferometer to measure the rotation field of reflecting surfaces. This setup is based on a homemade prism featuring a birefringence gradient. The arrangement is presented before focusing on the homemade prism and its manufacturing process. The dependence of the measured optical phase on the rotation of the surface is derived, thus highlighting the key parameters driving the sensitivity. The system’s capabilities are illustrated by imaging the rotation field at the surface of a tip-loaded polymer specimen.

© 2013 Optical Society of America

OCIS Codes
(180.3170) Microscopy : Interference microscopy
(110.3175) Imaging systems : Interferometric imaging
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Imaging Systems

Original Manuscript: March 18, 2013
Manuscript Accepted: May 6, 2013
Published: June 19, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Thomas Travaillot, Søren Dohn, Anja Boisen, and Fabien Amiot, "Imaging interferometry to measure surface rotation field," Appl. Opt. 52, 4360-4369 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992). [CrossRef]
  2. U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, and W. Arnold, “Quantitative determination of contact stiffness using atomic force acoustic microscopy,” Ultrasonics 38, 430–437 (2000). [CrossRef]
  3. B. Cretin and F. Sthal, “Scanning microdeformation microscopy,” Appl. Phys. Lett. 62, 829–831 (1993). [CrossRef]
  4. B. Cretin and P. Vairac, “Measurement of cantilever vibrations with a new heterodyne laser probe—application to scanning microdeformation microscopy,” Appl. Phys. A. 66, S235–S238 (1998).
  5. P. Vairac and B. Cretin, “Electromechanical resonator in scanning microdeformation microscopy: theory and experiment,” Surf. Interface Anal. 27, 588–591 (1999). [CrossRef]
  6. P. Vairac, S. Ballandras, and B. Cretin, “Finite element analysis of the behavior of the scanning microdeformation microscope,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 895–899 (2001). [CrossRef]
  7. J. Le Rouzic, P. Delobelle, P. Vairac, and B. Cretin, “Comparison of three different scales techniques for the dynamic mechanical characterization of two polymers (PDMS and SU8),” Eur. Phys. J. Appl. Phys. 48, 11201 (2009). [CrossRef]
  8. M. J. Bamber, K. E. Cooke, A. B. Mann, and B. Derby, “Accurate determination of Young’s modulus and Poisson’s ratio of thin films by a combination of acoustic microscopy and nanoindentation,” Thin Solid Films 398–399, 299–305 (2001). [CrossRef]
  9. R. Feng and R. J. Farris, “The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating,” J. Mater. Sci. 37, 033509 (2002).
  10. D. C. Hurley and J. A. Turner, “Measurement of Poisson’s ratio with contact-resonance atomic force microscopy,” J. Appl. Phys. 102, 033509 (2007). [CrossRef]
  11. J. Le Rouzic, P. Delobelle, B. Cretin, P. Vairac, and F. Amiot, “Simultaneous measurement of Young’s modulus and Poisson’s ratio at microscale with two-modes scanning microdeformation microscopy,” Mater. Lett. 68, 370–373 (2012). [CrossRef]
  12. M. Françon and S. Mallick, “Compensated polarization interferometers for the observation of phase objects,” in Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 55–67.
  13. F. Amiot and J. P. Roger, “Nomarski imaging interferometry to measure the displacement field of micro-electro-mechanical systems,” Appl. Opt. 45, 7800–7810 (2006). [CrossRef]
  14. M. J. Boussinesq, “Valeurs des déplacements, des déformations et de pressions intérieures, quand les potentiels se réduisent à un seul de leurs éléments,” in Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques (Gauthier-Villars, 1885), pp. 81–108 (in French).
  15. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys. 74, 036101 (2011). [CrossRef]
  16. D. Malacara and O. Harris, “Interferometric measurement of angles,” Appl. Opt. 9, 1630–1633 (1970). [CrossRef]
  17. G. D. Chapman, “Interferometric angular measurement,” Appl. Opt. 13, 1646–1651 (1974). [CrossRef]
  18. P. Shi and E. Stijns, “New optical method for measuring small-angle rotation,” Appl. Opt. 27, 4342–4346 (1988). [CrossRef]
  19. C. J. Tay, C. Quan, S. H. Wang, and H. M. Shang, “Determination of a micromirror angular rotation using laser interferometric method,” Opt. Commun. 195, 71–77 (2001). [CrossRef]
  20. W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26, 396–404 (2002). [CrossRef]
  21. M. Xiao, S. Jujo, S. Takahashi, and K. Takamasu, “Nanometer profile measurement of large aspheric optical surface by scanning deflectometry with rotatable devices—Uncertainty propagation analysis and experiments,” Precis. Eng. 36, 91–96 (2012). [CrossRef]
  22. Y. Surrel, N. Fournier, M. Grédiac, and P.-A. Paris, “Phase-stepped deflectometry applied to shape measurement of bent plates,” Exp. Mech. 39, 66–70 (1999). [CrossRef]
  23. J.-R. Lee, J. Molimard, A. Vautrin, and Y. Surrel, “Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension,” Compos. Part A Appl. Sci. Manufact. 35, 849–859 (2004). [CrossRef]
  24. M. Born, E. Wolf, and A. B. Bhatia, “Geometrical theory of optical imaging,” in Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1959), pp. 133–202.
  25. A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2326–2331 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited