OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity

Wei-Liang Jin, Xu Yi, Yi-Wen Hu, Bei-Bei Li, and Yun-Feng Xiao  »View Author Affiliations

Applied Optics, Vol. 52, Issue 2, pp. 155-161 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (550 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to detect nanoparticles in extremely dilute solutions in the presence of environmental noise is crucial for biosensing applications. In this paper we propose a scheme for detecting target nanoparticles through their scattering effects in a high-Q whispering gallery microcavity. The detection signal, defined as the total linewidth broadening of the two new split modes that appear upon nanoparticle adsorption, is highly sensitive and proportional to the nanoparticle concentration. Furthermore, this new method of detection eliminates the requirement for strict temperature control and is capable of distinguishing the signal from the biorecognitions (e.g., antibodies) initially attached to the resonator and that from the target nanoparticles (e.g., antigens).

© 2013 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(140.3948) Lasers and laser optics : Microcavity devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: September 5, 2012
Revised Manuscript: November 23, 2012
Manuscript Accepted: November 27, 2012
Published: January 4, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Wei-Liang Jin, Xu Yi, Yi-Wen Hu, Bei-Bei Li, and Yun-Feng Xiao, "Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity," Appl. Opt. 52, 155-161 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  2. S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40, 570–582 (2001). [CrossRef]
  3. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742–5747 (2001). [CrossRef]
  4. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
  5. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006). [CrossRef]
  6. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006). [CrossRef]
  7. Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010). [CrossRef]
  8. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002). [CrossRef]
  9. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef]
  10. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003). [CrossRef]
  11. M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87, 223901 (2005). [CrossRef]
  12. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
  13. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
  14. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011). [CrossRef]
  15. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011). [CrossRef]
  16. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704(2012). [CrossRef]
  17. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010). [CrossRef]
  18. M. L. Gorodetsky, “Thermodynamical fluctuations in optical microspheres,” Proc. SPIE 4270, 147–153 (2001). [CrossRef]
  19. K. R. Hiremath and V. N. Astratov, “Perturbations of whispering gallery modes by nanoparticles embedded in microcavities,” Opt. Express 16, 5421–5436 (2008). [CrossRef]
  20. I. Teraoka and S. Arnold, “Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry,” J. Opt. Soc. Am. B 26, 1321–1329 (2009). [CrossRef]
  21. L. Deych and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single dipole scatterer,” Phys. Rev. A 80, 061805(R) (2009). [CrossRef]
  22. X. Yi, Y.-F. Xiao, Y. Li, Y.-C. Liu, B.-B. Li, Z.-P. Liu, and Q. Gong, “Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator,” Appl. Phys. Lett. 97, 203705 (2010). [CrossRef]
  23. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011). [CrossRef]
  24. J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011). [CrossRef]
  25. Y. Shen and J.-T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85, 013801 (2012). [CrossRef]
  26. Y. Shen, D.-R. Chen, and J.-T. Shen, “statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator,” Phys. Rev. A 85, 063808 (2012). [CrossRef]
  27. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995). [CrossRef]
  28. A. Mazzei, S. Götzinger, L. de Souza Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007). [CrossRef]
  29. B. Koch, Y. Yi, J.-Y. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95, 201111 (2009). [CrossRef]
  30. J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. N. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010). [CrossRef]
  31. L. He, S. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010). [CrossRef]
  32. W. Kim, S. K. Özdemir, L. He, and L. Yang, “Observation and characterization of mode splitting in microsphere resonators in aquatic environment,” Appl. Phys. Lett. 97, 071111(2010). [CrossRef]
  33. J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010). [CrossRef]
  34. L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011). [CrossRef]
  35. X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, and Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012). [CrossRef]
  36. J. Zhu, S. K. Özdemir, L. He, D.-R. Chen, and L. Yang, “Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express 19, 16195–16206 (2011). [CrossRef]
  37. K. Srinivasan and O. Painter, “Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity,” Phys. Rev. A 75, 023814 (2007). [CrossRef]
  38. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007). [CrossRef]
  39. S. Y. Tetin and T. L. Hazlett, “Optical spectroscopy in studies of antibody–hapten interactions,” Methods 20, 341–361 (2000). [CrossRef]
  40. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004). [CrossRef]
  41. D. B. Levitona and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (2006).
  42. M. L. Gorodetsky and I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21, 697–705 (2004). [CrossRef]
  43. B. E. Little and J.-P. Laine, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited