OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Theory of lidar method for measurement of the modulation transfer function of water layers

Lev S. Dolin  »View Author Affiliations


Applied Optics, Vol. 52, Issue 2, pp. 199-207 (2013)
http://dx.doi.org/10.1364/AO.52.000199


View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water.

© 2013 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7295) Atmospheric and oceanic optics : Visibility and imaging
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 6, 2012
Revised Manuscript: November 8, 2012
Manuscript Accepted: November 18, 2012
Published: January 7, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Lev S. Dolin, "Theory of lidar method for measurement of the modulation transfer function of water layers," Appl. Opt. 52, 199-207 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-2-199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001). [CrossRef]
  2. D. M. Bravo-Zhivotovsky, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources,” in Hydrophysical and Hydrooptics Investigations in the Atlantic and the Pacific Oceans, A. S. Monin and K. S. Shifrin, eds. (Nauka, 1974), pp. 153–158, (in Russian).
  3. A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).
  4. B. Billard, R. H. Abbot, and M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986). [CrossRef]
  5. D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).
  6. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988). [CrossRef]
  7. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993). [CrossRef]
  8. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurement of sea-surface slope statistics,” Appl. Opt. 36, 4202–4212 (1997). [CrossRef]
  9. A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Airborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353–4364 (2001). [CrossRef]
  10. K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Ocean. Eng. 27, 525–545 (2002). [CrossRef]
  11. V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003). [CrossRef]
  12. J. H. Churnside and J. J. Wilson, “Airborne lidar imaging of salmon,” Appl. Opt. 43, 1416–1424 (2004). [CrossRef]
  13. J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens. 26, 167–177 (2005). [CrossRef]
  14. Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005). [CrossRef]
  15. G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005). [CrossRef]
  16. F. E. Hoge, “Oceanic inherent optical properties: proposed single laser lidar and retrieval theory,” Appl. Opt. 44, 7483–7486 (2005). [CrossRef]
  17. E. Zege, I. Katsev, and A. Prikhach, “Retrieval of seawater inherent optical properties profiles from lidar waveforms,” Proc. SPIE 6615, 66150B (2007). [CrossRef]
  18. I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007). [CrossRef]
  19. V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007). [CrossRef]
  20. D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).
  21. W. H. Wells, “Theory of small angle scattering,” in Optics of the Sea (NATO, 1973), Chap. 3.3, pp. 1–19.
  22. L. E. Mertens and F. S. Replogle, “Use of point spread and beam spread function for analysis of imaging systems in water,” J. Opt. Soc. Am. 67, 1105–1117 (1977). [CrossRef]
  23. K. J. Voss, “Simple empirical model of the oceanic point spread function,” Appl. Opt. 30, 2647–2651 (1991). [CrossRef]
  24. K. J. Voss and A. Chapin, “Measurement of the point spread function in the ocean,” Appl. Opt. 29, 3638–3642 (1990). [CrossRef]
  25. J. W. McLean and K. J. Voss, “Point spread function in ocean water: comparison between theory and experiment,” Appl. Opt. 30, 2027–2030 (1991). [CrossRef]
  26. L. S. Dolin and I. M. Levin, Theory of Underwater Vision(Gidrometeoizdat, 1991) (in Russian).
  27. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium (Springer, 1991).
  28. H. R. Gordon, “Equivalence of the point and beam spread function of scattering media: a formal demonstration,” Appl. Opt. 33, 1120–1122 (1994). [CrossRef]
  29. L. S. Dolin and I. M. Levin, “Optics, underwater,” Encyclopedia of Applied Physics (VCH Publishers, 1995), Vol. 12, pp. 571–601.
  30. W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.
  31. K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, 1967).
  32. L. S. Dolin and V. A. Savel’ev, “New model for light-beam spread function in a medium with strongly anisotropic scattering,” Atmos. Ocean. Phys. 36, 794–801 (2000) (in Russian).
  33. L. S. Dolin and V. A. Savel’ev, “Characterization of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam,” Atmos. Ocean. Phys. 7, 505–510 (1971) (in Russian).
  34. J. W. McLean, J. D. Freeman, and R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998). [CrossRef]
  35. D. L. Hutt, L. R. Bissonnette, and L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994). [CrossRef]
  36. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002). [CrossRef]
  37. L. R. Bissonnette, G. Roy, and N. Roy, “Multiple-scattering-based lidar retrieval: method and results of cloud probings,” Appl. Opt. 44, 5565–5581 (2005). [CrossRef]
  38. L. S. Dolin, “Light beam scattering in a turbid medium layer,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7, 471–478 (1964) (in Russian).
  39. D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).
  40. I. M. Levin and O. V. Kopelevich, “Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm,” Oceanology 47, 344–349 (2007).
  41. J. W. McLean, D. R. Crawford, and C. L. Hindman, “Limits of small angle scattering theory,” Appl. Opt. 26, 2053–2054 (1987). [CrossRef]
  42. G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003). [CrossRef]
  43. B. M. Welsh and C. S. Gardner, “Performance analysis of adaptive-optics systems using laser guide stars and slope sensors,” J. Opt. Soc. Am. A 6, 1913–1923 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited