OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Design and evaluation of a miniature probe integrating diffuse optical tomography and electroencephalographic source localization

Hao Yang and Huabei Jiang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 20, pp. 5036-5041 (2013)
http://dx.doi.org/10.1364/AO.52.005036


View Full Text Article

Enhanced HTML    Acrobat PDF (775 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a dual-modality three-dimensional imaging approach that integrates diffuse optical tomography (DOT) and electroencephalographic source localization (ESL). This dual-modal DOT/ESL approach is evaluated using solid tissue-like phantoms where targets having both optical and electrical contrasts relative to the background phantom are included. The results obtained from extensive phantom experiments show that this dual-modal approach is suitable for imaging seizure focus in the study of epilepsy.

© 2013 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 2, 2013
Revised Manuscript: June 17, 2013
Manuscript Accepted: June 17, 2013
Published: July 10, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Hao Yang and Huabei Jiang, "Design and evaluation of a miniature probe integrating diffuse optical tomography and electroencephalographic source localization," Appl. Opt. 52, 5036-5041 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-20-5036


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).
  2. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125–1144 (2006). [CrossRef]
  3. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007). [CrossRef]
  4. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004). [CrossRef]
  5. N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008). [CrossRef]
  6. Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008). [CrossRef]
  7. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near infrared spectroscopy,” Biomed. Opt. Express 1, 324–336 (2010). [CrossRef]
  8. J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51, 3461–3469 (2012). [CrossRef]
  9. M. Nuwer, “Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Report of the American Academy of Neurology and the American Clinical Neurophysiology Society,” Neurology 49, 277–292 (1997). [CrossRef]
  10. A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000). [CrossRef]
  11. G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003). [CrossRef]
  12. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004). [CrossRef]
  13. F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006). [CrossRef]
  14. C. Plummer, A. S. Harvey, and M. Cook, “EEG source localization in focal epilepsy: where are we now?” Epilepsia 49, 201–218 (2008). [CrossRef]
  15. P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012). [CrossRef]
  16. Y. Petrov, “Harmony: EEG/MEG linear inverse source reconstruction in the anatomical of spherical harmonics,” PLoS ONE 7, 1–15 (2012). [CrossRef]
  17. N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007). [CrossRef]
  18. R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009). [CrossRef]
  19. R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009). [CrossRef]
  20. M. C. Toet and P. M. A. Lemmers, “Brain monitoring in neonates,” Early Hum. Dev. 85, 77–84 (2009). [CrossRef]
  21. D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012). [CrossRef]
  22. M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012). [CrossRef]
  23. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998). [CrossRef]
  24. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998). [CrossRef]
  25. H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media,” Opt. Express 7, 204–209 (2000). [CrossRef]
  26. H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999). [CrossRef]
  27. X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30861–869 (2003). [CrossRef]
  28. Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007). [CrossRef]
  29. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited