OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Degradation of near infrared and shortwave infrared imager performance due to atmospheric scattering of diffuse night illumination

Richard Vollmerhausen  »View Author Affiliations


Applied Optics, Vol. 52, Issue 21, pp. 5097-5105 (2013)
http://dx.doi.org/10.1364/AO.52.005097


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On moonless nights, airglow is the primary source of natural ground illumination in the near infrared and shortwave infrared spectral bands. Therefore, night vision imagers operating in these spectral bands view targets that are diffusely illuminated. Aerosol scattering of diffuse airglow illumination causes atmospheric path radiance and that radiance causes increased imager noise. These phenomena and their quantification are described in this paper.

© 2013 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Imaging Systems

History
Original Manuscript: April 10, 2013
Revised Manuscript: June 3, 2013
Manuscript Accepted: June 11, 2013
Published: July 12, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Richard Vollmerhausen, "Degradation of near infrared and shortwave infrared imager performance due to atmospheric scattering of diffuse night illumination," Appl. Opt. 52, 5097-5105 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-21-5097


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Leinert, S. Bowyer, L. K. Haikala, M. S. Hanner, M. G. Hauser, A.-C. Levasseur-Regourd, I. Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. L. Weiland, and A. N. Witt, “The 1997 reference of diffuse night sky brightness,” Astron. Astrophys. Suppl. Ser. 127, 1–99 (1998). [CrossRef]
  2. R. H. Vollmerhausen and T. Maurer, “Night illumination in the visible, NIR and SWIR spectral bands,” Proc. SPIE 5076, 60–69 (2003). [CrossRef]
  3. L. M. Biberman, “Natural sources of low-light-level illumination,” in Electro-Optical Imaging: System Performance and Modeling, L. M. Biberman, ed. (SPIE, 2000), Chap. 3.
  4. W. L. Wolfe and G. J. Zissis, eds., “Natural sources,” in The Infrared Handbook (The Infrared Information Analysis Center, Environmental Research Institute of Michigan, 1993).
  5. R. Vollmerhausen, R. G. Driggers, and V. A. Hodgkin, “Night illumination in the near and short wave infrared spectral bands and the potential for silicon and indium–gallium–arsenide imagers to perform night targeting,” Opt. Eng. 52, 043202 (2013).
  6. J. W. Merriweather, “A review of the photochemistry of selected nightglow emissions from the mesopause,” J. Geophys. Res. 94, 14629–14646 (1989). [CrossRef]
  7. I. C. McDade, “The photochemistry of the MLT oxygen airglow emissions and the expected influences of tidal perturbations,” Adv. Space Res. 21, 787–794 (1998). [CrossRef]
  8. F. J. Mulligan, M. E. Dyrland, F. Sigernes, and C. S. Doehr, “Inferring hydroxal layer peak heights from ground-based measurements of OH(6-2) band integrated emission rate at Longyearbyen (78° N, 16° E),” Ann. Geophys. 27, 4197–4205 (2009). [CrossRef]
  9. R. Nikoukar, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112, D19109 (2007). [CrossRef]
  10. D. J. Baker, B. K. Thurgood, W. K. Harrison, and M. G. Mlynczak, “Equatorial enhancement of the nighttime OH mesospheric infrared airglow,” Phys. Scr. 75, 615–619 (2007). [CrossRef]
  11. G. Waldman and J. Wooton, Electro-Optical System Performance Modeling (Artech House, 1993), p. 90.
  12. R. G. Driggers, P. Cox, and T. Edwards, Introduction to Infrared and Electro-Optical Systems (Artech House, 1999), p. 114.
  13. R. H. Vollmerhausen, D. A. Reago, and R. G. Driggers, Analysis and Evaluation of Sampled Imaging Systems (SPIE, 2010), Chap. 10.
  14. L. M. Biberman, J. Kristl, and J. Schoeder, “Atmospheric transmission,” in Electro-Optical Imaging: System Performance and Modeling, L. M. Biberman, ed. (SPIE, 2000), Chap. 10.
  15. S. G. O’Brien and R. C. Shirkey, “Determination of atmospheric path radiance: sky-to-ground ratio for wargamers,” (Army Research Lab., White Sands Missile Range, NM, 2004).
  16. W. L. Wolfe and G. J. Zissis, eds., “Atmospheric scattering,” in The Infrared Handbook (The Infrared Information Analysis Center, Environmental Research Institute of Michigan, 1993), Chap. 4.
  17. L. W. Abreu and G. P. Anderson, The MODTRAN 2/3 and LOWTRAN 7 Model (ONTAR Corp., 1995).
  18. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, and R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” , Enviromental Research Paper No. 846 (Air Force Geophysics Lab., Hanscom AFB, MA, 1983).
  19. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” , Environmental Research Paper No. 876 (Air Force Geophysics Lab., Hanscom AFB, MA, 1979), Chap. 3.
  20. D. K. Killinger, J. H. Churnside, and L. S. Rothman, “Atmospheric optics,” in Handbook of Optics, M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. L. C. MacDonald, V. Mahajan, and E. V. Stryland, eds. (McGraw-Hill, 2010), Vol. 5, Chap. 3.
  21. R. G. Driggers, V. A. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Part I: passive day comparison of SWIR, NIR, and Vis,” Proc. SPIE 8706, 87060L (2013).
  22. X. Liu, B. A. Fowler, S. K. Onishi, P. Vu, D. D. Wen, H. Do, and S. Horn, “CCD/CMOS hybrid FPA for low light level imaging,” Proc. SPIE 5881, 58810C (2005).
  23. B. M. Onat, W. Huang, N. Masaun, M. Lange, M. H. Ettenberg, and C. Driesa, “Ultra low dark current InGaAs technology for focal lane arrays for low-light level visible-shortwave infrared imaging,” Proc. SPIE 6542, 65420L (2007). [CrossRef]
  24. M. MacDougal, J. Geske, C. Wang, and D. Follman, “Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators,” Opt. Eng. 50, 061011 (2011). [CrossRef]
  25. M. A. Blessinger, M. Enriqueza, J. V. Groppea, K. Flynna, and T. M. Sudola, “Performance of focal plane arrays for the photon counting arrays (PCAR) program,” Proc. SPIE 6542, 65420K (2007). [CrossRef]
  26. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3756, 348–353 (1999).
  27. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 4049, 176–183 (2000).
  28. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005). [CrossRef]
  29. A. Berk, G. P. Anderson, P K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lweis, and E. P. Shettle, “MODTRAN 5: 2006 update,” Proc. SPIE 6233, 62331F (2006). [CrossRef]
  30. R. G. Isaacs, W. C. Wang, R. D. Worsham, and S. Goldenberg, “Multiple scattering LOWTRAN and FASCODE models,” Appl. Opt. 26, 1272–1281 (1987). [CrossRef]
  31. J. E. Hansen, “Exact and approximate solutions for multiple scattering by cloudy and hazy planetary atmospheres,” J. Atmos. Sci. 26, 478–487 (1969). [CrossRef]
  32. P. A. Jansson, Deconvolution of Images and Spectra (Academic, 1997), Chap. 4, p. 107.
  33. R. Vollmerhausen, “Design of finite impulse response deconvolution filters,” Appl. Opt. 49, 5814–5827 (2010). [CrossRef]
  34. A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. S. Bernstein, E. P. Shettle, M. W. Matthew, and S. M. Adler-Golden, MODTRAN 4 Users Manual (Air Force Research Lab., Space Vehicles Directorate, Air Force Materials Command, Hanscom AFB, MA, 1999).
  35. D. Kryskowski and G. Suits, “Natural sources,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta and D. Shumaker, eds. (SPIE, 1993), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited