OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Nucleonic-resolution optical mass sensor based on a graphene nanoribbon quantum dot

Wen Bin and Ka-Di Zhu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 23, pp. 5816-5821 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The high frequency and ultrasmall mass of graphene make it an ideal material for ultrasensitive mass sensing. In this article, based on the all-optical technique, we propose a scheme of an optical mass sensor to weigh the mass of a single atom or molecule via a doubly clamped Z-shaped graphene nanoribbon (GNR). We use the detection of shifts in the resonance frequency of the Z-shaped GNR to determine the mass of an external particle landing on the GNR. The highly sensitive mass sensor proposed here can weigh particles down to the yoctogram and may eventually be enable to realize the mass measurement of nucleons.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.5750) Optical devices : Resonators
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: March 25, 2013
Revised Manuscript: July 8, 2013
Manuscript Accepted: July 17, 2013
Published: August 8, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Wen Bin and Ka-Di Zhu, "Nucleonic-resolution optical mass sensor based on a graphene nanoribbon quantum dot," Appl. Opt. 52, 5816-5821 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic property and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008). [CrossRef]
  2. M. LaHaye, O. Buu, B. Camarota, and K. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004). [CrossRef]
  3. C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009). [CrossRef]
  4. D. Rugar, R. Budakian, H. Mamin, and B. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004). [CrossRef]
  5. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012). [CrossRef]
  6. D. Wei and Y. Liu, “Controllable synthesis of graphene and its applications,” Adv. Mater. 22, 3225–3241 (2010). [CrossRef]
  7. S. Roche, “Nanoelectronics: graphene gets a better gap,” Nat. Nanotechnol. 6, 8–9 (2011). [CrossRef]
  8. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, A. P. Muoth, M. Seitsonen, M. Saleh, X. Feng, K. Muellen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466, 470–473 (2010). [CrossRef]
  9. Z. F. Wang, Q. W. Shi, Q. Li, X. Wang, J. G. Hou, H. Zheng, Y. Yao, and J. Chen, “Z-shaped graphene nanoribbon quantum dot device,” Appl. Phys. Lett. 91, 053109 (2007). [CrossRef]
  10. D. Prezzi, D. Varsano, A. Ruini, and E. Molinari, “Quantum dot states and optical excitations of edge-modulated graphene nanoribbons,” Phys. Rev. B 84, 041401(R) (2011). [CrossRef]
  11. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  12. B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, “Spin qubits in graphene quantum dots,” Nat. Phys. 3, 192–196 (2007). [CrossRef]
  13. P. G. Silvestrov and K. B. Efetov, “Quantum dots in graphene,” Phys. Rev. Lett. 98, 016802 (2007). [CrossRef]
  14. J. M. Pereira, P. Vasilopoulos, and F. M. Peeters, “Tunable quantum dots in bilayer graphene,” Nano Lett. 7, 946–949 (2007). [CrossRef]
  15. G. P. Guo, Z. R. Lin, T. Tu, G. Cao, X. P. Li, and G. C. Guo, “Quantum computation with graphene nanoribbon,” New J. Phys. 11, 123005 (2009). [CrossRef]
  16. J. J. Li and K. D. Zhu, “Plasmon-assisted mass sensing in a hybrid nanocrystal coupled to a nanomechanical resonator,” Phys. Rev. B 83, 245421 (2011). [CrossRef]
  17. C. Jiang, B. Chen, J. J. Li, and K. D. Zhu, “Mass sensing based on a circuit cavity electromechanical system,” J. Appl. Phys. 110, 083107 (2011). [CrossRef]
  18. I. Wilson-Rae, C. Galland, W. Zwerger, and A. Imamoglu, “Exciton-assisted optomechanics with suspended carbon nanotubes,” New J. Phys. 14, 115003 (2012). [CrossRef]
  19. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  20. K. F. Graff, Wave Motion in Elastic Solids (Dover, 1991).
  21. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  22. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005). [CrossRef]
  23. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  24. J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614–1617 (1991). [CrossRef]
  25. O. K. Kwon, K. Kim, J. Park, and J. W. Kang, “Molecular dynamics modeling and simulations of graphene-nanoribbon-resonator-based nanobalance as yoctogram resolution detector,” Comput. Mater. Sci. 67, 329–333 (2013). [CrossRef]
  26. M. Sadeghi and R. Naghdabadi, “Nonlinear vibrational analysis of single-layer graphene sheets,” Nanotechnology 21, 105705 (2010). [CrossRef]
  27. A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Large-scale arrays of single-layer graphene resonators,” Nano Lett. 10, 4869–4873 (2010). [CrossRef]
  28. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12, 844–849 (2012). [CrossRef]
  29. E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005). [CrossRef]
  30. E. K. Irish, “Generalized rotating-wave approximation for arbitrarily large coupling,” Phys. Rev. Lett. 99, 173601 (2007). [CrossRef]
  31. H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resoantors,” Nano Lett. 8, 4342–4346 (2008). [CrossRef]
  32. F. Liu and M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sens. J. 13, 146–147 (2013). [CrossRef]
  33. S. Y. Kim, S. Cho, J. W. Kang, and O. K. Kwon, “Molecular dynamics simulation study on mechanical responses of nanoindented monolayer-graphene-nanoribbon,” Phys. E 54, 118–124 (2013). [CrossRef]
  34. S. Y. Kim and H. S. Park, “The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators,” Nano Lett. 9, 969–974 (2009). [CrossRef]
  35. A. Sakhaee-Pour, M. T. Ahmadian, and R. Naghdabadi, “Vibrational analysis of single-layered graphene sheets,” Nanotechnology 19, 085702 (2008). [CrossRef]
  36. J. W. Kang, J. H. Lee, H. J. Hwang, and K. Kim, “Developing accelerometer based on graphene nanoribbon resonators,” Phys. Lett. A 376, 3248–3255 (2012). [CrossRef]
  37. Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited