OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Design of plastic diffractive–refractive compact zoom lenses for visible–near-IR spectrum

Grigoriy I. Greisukh, Evgeniy G. Ezhov, Zoya A. Sidyakina, and Sergei A. Stepanov  »View Author Affiliations


Applied Optics, Vol. 52, Issue 23, pp. 5843-5850 (2013)
http://dx.doi.org/10.1364/AO.52.005843


View Full Text Article

Enhanced HTML    Acrobat PDF (672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The requirements for selecting the initial scheme for a compact plastic zoom lens are formulated. The main stages of the initial scheme of the transformation, incorporating the diffractive lens and replacement of the lenses’ glasses by optical plastics, are presented. The efficiency of the suggested techniques of the optical layout process are demonstrated by using the example of the design and analysis of a zoom lens intended for use in security cameras for day or night vision.

© 2013 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(220.1000) Optical design and fabrication : Aberration compensation
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 29, 2013
Revised Manuscript: July 18, 2013
Manuscript Accepted: July 19, 2013
Published: August 9, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Grigoriy I. Greisukh, Evgeniy G. Ezhov, Zoya A. Sidyakina, and Sergei A. Stepanov, "Design of plastic diffractive–refractive compact zoom lenses for visible–near-IR spectrum," Appl. Opt. 52, 5843-5850 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-23-5843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Weng, X. Zhang, and X. Cong, “Design of zoom lens with binary optics,” Proc. SPIE 2539, 118–127 (1995). [CrossRef]
  2. H. Sato and S. Yamaguchi, “Optical design of digital camera zoom lenses employing plastic lens elements,” Proc. SPIE 6196, 61960D (2006). [CrossRef]
  3. K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007). [CrossRef]
  4. G. Greisukh, E. Ezhov, A. Kalashnikov, and S. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597–4604 (2012). [CrossRef]
  5. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 5.5.3, p. 253.
  6. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. 19, 1610–1620 (2002). [CrossRef]
  7. OmniVision, “5-Megapixel image sensors,” http://www.ovt.com/products/category.php?id=11 .
  8. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic microobjectives,” Appl. Opt. 49, 4379–4384 (2010). [CrossRef]
  9. S.-M. Lin, C.-H. Lin, and S.-F. Cheng, “Miniature zoom lens,” U.S. patent8,218,244 (10July2012).
  10. Radiant Zemax, http://www.zemax.com .
  11. Santa Barbara Surveillance Systems, http://sbsurvco.com/ThermosCamera.html .
  12. G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012). [CrossRef]
  13. W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005). [CrossRef]
  14. D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15, 1167–1174 (2007). [CrossRef]
  15. G-S Plastic Optics, http://www.gsoptics.com .
  16. Edmund Optics, http://www.edmundoptics.com .
  17. Digital Photography Review, “New Canon 400 mm f/4 DO IS USM,” http://www.dpreview.com/news/0009/00090604canon_400do.asp .
  18. V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74, 65–70 (2007). [CrossRef]
  19. T. Nakai, “Diffractive optical element and optical system including the same,” U.S. patent7,301,702 (27November2007).
  20. B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. 3, 08015 (2008). [CrossRef]
  21. G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited