OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media

M. Gao, X. Huang, P. Yang, and G. W. Kattawar  »View Author Affiliations


Applied Optics, Vol. 52, Issue 24, pp. 5869-5879 (2013)
http://dx.doi.org/10.1364/AO.52.005869


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

© 2013 Optical Society of America

OCIS Codes
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(290.1483) Scattering : BSDF, BRDF, and BTDF
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Scattering

History
Original Manuscript: May 14, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 16, 2013
Published: August 12, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
M. Gao, X. Huang, P. Yang, and G. W. Kattawar, "Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media," Appl. Opt. 52, 5869-5879 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-24-5869


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Implementation (Morgan Kaufmann, 2010).
  2. J.-L. Roujean, M. Leroy, and P.-Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 20455–20468 (1992). [CrossRef]
  3. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).
  4. A. Steyerl, S. S. Malik, and L. R. Iyengar, “Specular and diffuse reflection and refraction at surfaces,” Physica B 173, 47–64 (1991). [CrossRef]
  5. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1112 (1967). [CrossRef]
  6. M. Janecek and W. W. Moses, “Simulating scintillator light collection using measured optical reflectance,” IEEE Trans. Nucl. Sci. 57, 964–970 (2010).
  7. S. Chandrasekhar, Radiative Transfer (Dover Publications, Inc., 1960).
  8. C. Mobley, Light and Water-Radiative Transfer in Natural Waters (Academic, 1994).
  9. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef]
  10. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef]
  11. J. Xia and G. Yao, “Angular distribution of diffuse reflectance in biological tissue,” Appl. Opt. 46, 6552–6560 (2007). [CrossRef]
  12. L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  13. M. I. Mishchenko, “Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach,” Rev. Geophys. 46, RG2003 (2008). [CrossRef]
  14. J. W. Hovenier, C. van der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres: Basic Concepts and Practical Methods (Kluwer Academic, 2004).
  15. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).
  16. A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380, 379–390 (1999). [CrossRef]
  17. G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263–8268 (2008). [CrossRef]
  18. L. M. Mäthger, S. L. Senft, M. Gao, S. Karaveli, G. R. R. Bell, R. Zia, A. M. Kuzirian, P. B. Dennis, W. J. Crookes-Goodson, R. R. Naik, G. W. Kattawar, and R. T. Hanlon, “Bright white scattering from protein spheres in color changing, flexible cuttlefish skin,” Adv. Funct. Mat. (to be published). [CrossRef]
  19. M. D. Shawkey, A. M. Estes, L. M. Siefferman, and G. E. Hill, “Nanostructure predicts intraspecific variation in ultraviolet–blue plumage colour,” Proc. R. Soc. B 270, 1455–1460 (2003). [CrossRef]
  20. M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55, 2432–2437 (2008). [CrossRef]
  21. J. L. Saunderson, “Calculation of the color of pigmented plastics,” J. Opt. Soc. Am. 32, 727–729 (1942). [CrossRef]
  22. A. García-Valenzuela, F. L. S. Cuppo, and J. A. Olivares, “An assessment of Saunderson corrections to the diffuse reflectance of paint films,” J. Phys. Conf. Ser. 274, 012125 (2011). [CrossRef]
  23. J. M. Haag, J. S. Jaffe, and A. M. Sweeney, “Measurement system for marine animal reflectance functions,” Opt. Express 21, 3603–3616 (2013). [CrossRef]
  24. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–773 (1965). [CrossRef]
  25. C. Bohren and E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH, 2006).
  26. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  27. J. F. Dehaan, P. B. Bosma, and J. W. Hovenier, “The adding method for multiple-scattering calculations of polarized-light,” Astron. Astrophys. 183, 371–391 (1987).
  28. C. Sergent, C. Leroux, E. Pougatch, and F. Guirado, “Hemispherical-directional reflectance measurements of natural snows in the 0.9–1.45 μm spectral range: comparison with adding-doubling modelling,” Ann. Glaciol. 26, 59–63 (1998).
  29. R. B. A. Koelemeijer, P. Stammes, J. W. Hovenier, and J. F. de Haan, “A fast method for retrieval of cloud parameters using oxygen A-band measurements from the global ozone monitoring experiment,” J. Geophys. Res. Atmos. 106, 3475–3490 (2001). [CrossRef]
  30. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef]
  31. S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51, 2011–2027 (2006). [CrossRef]
  32. W. J. Wiscombe, “The delta–m method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977). [CrossRef]
  33. H. van de Hulst, “Scaling laws in multiple light scattering under very small angles,” Rev. Mod. Astron. 9, 1–16 (1996).
  34. G. W. Petty, A First Course in Atmospheric Radiation, 2nd ed. (Sundog Publishing, 2006).
  35. G. W. Kattawar and G. N. Plass, “Interior radiances in optically deep absorbing media. 1. Exact solutions for one-dimensional model,” J. Quant. Spectrosc. Radiat. Transfer 13, 1065–1080 (1973). [CrossRef]
  36. C. F. Bohren, “Multiple scattering of light and some of its observable consequences,” Am. J. Phys. 55, 524–533 (1987). [CrossRef]
  37. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, 2002).
  38. M. Leonetti and C. López, “Measurement of transport mean-free path of light in thin systems,” Opt. Lett. 36, 2824–2826 (2011). [CrossRef]
  39. L. Wang and S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A 10, 1746–1752 (1993). [CrossRef]
  40. Z. Wang, M. A. Webster, A. M. Weiner, and K. J. Webb, “Polarized temporal impulse response for scattering media from third-order frequency correlations of speckle intensity patterns,” J. Opt. Soc. Am. A 23, 3045–3053 (2006). [CrossRef]
  41. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41 (1999). [CrossRef]
  42. P. W. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method,” Appl. Opt. 47, 1037–1047 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited