OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing

Lide Jiang and Menghua Wang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 27, pp. 6757-6770 (2013)
http://dx.doi.org/10.1364/AO.52.006757


View Full Text Article

Enhanced HTML    Acrobat PDF (4244 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA–MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS–SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA–MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA–MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

© 2013 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 15, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: August 18, 2013
Published: September 17, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Lide Jiang and Menghua Wang, "Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing," Appl. Opt. 52, 6757-6770 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-27-6757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Schueler, J. E. Clement, P. E. Ardanuy, C. Welsch, F. DeLuccia, and H. Swenson, “NPOESS VIIRS sensor design overview,” Proc. SPIE 4483, 11–23 (2002). [CrossRef]
  2. H. R. Gordon, D. K. Clark, J. L. Mueller, and W. A. Hovis, “Phytoplankton pigments from the Nimbus-7 coastal zone color scanner: comparisons with surface measurements,” Science 210, 63–66 (1980). [CrossRef]
  3. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. T. E. Sayed, B. Strum, R. C. Wrigley, and C. S. Yentsch, “Nimbus 7 coastal zone color scanner: system description and initial imagery,” Science 210, 60–63 (1980). [CrossRef]
  4. C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II 51, 5–42 (2004). [CrossRef]
  5. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998). [CrossRef]
  6. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989). [CrossRef]
  7. IOCCG, “Mission requirements for future ocean-colour sensors,” in Reports of International Ocean-Colour Coordinating Group, , C. R. McClain and G. Meister, eds. (IOCCG, Dartmouth, Canada, 2012).
  8. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1, 19–42 (2009). [CrossRef]
  9. IOCCG, “Why ocean colour?,” in Reports of International Ocean-Colour Coordinating Group, , T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (IOCCG, Dartmouth, Canada, 2008).
  10. S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, 32141–32157 (1998). [CrossRef]
  11. M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Remote Sens. 44, 3196–3205 (2006). [CrossRef]
  12. R. A. Barnes, A. W. Holmes, and W. E. Esaias, “Stray light in the SeaWiFS radiometer,” , Vol. 31 (NASA Goddard Space Flight Center, Greenbelt, Maryland1995).
  13. P. J. Shaw and D. J. Rawlins, “The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data,” J. Microsc. 163, 151–165 (1991). [CrossRef]
  14. G. Meister and C. R. McClain, “Point-spread function of the ocean color bands of the Moderate Resolution Imaging Spectroradiometer on Aqua,” Appl. Opt. 49, 6276–6285 (2010). [CrossRef]
  15. B. A. Franz and G. Meister, “MODIS/Aqua Straylight Flagging and Masking,” OceanColor WEB, 2005, http://oceancolor.gsfc.nasa.gov/REPROCESSING/Aqua/R1/modisa_repro1_stlight.html .
  16. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef]
  17. M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the sea-viewing wide field-of-view sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110, D10S06 (2005). [CrossRef]
  18. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15, 15722–15733 (2007). [CrossRef]
  19. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113, 635–644 (2009). [CrossRef]
  20. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46, 1535–1547 (2007). [CrossRef]
  21. M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45, 8951–8963 (2006). [CrossRef]
  22. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23, 2693–2702 (2002). [CrossRef]
  23. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26, 5651–5663 (2005). [CrossRef]
  24. W. Shi and M. Wang, “Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing,” Remote Sens. Environ. 110, 149–161 (2007). [CrossRef]
  25. M. Wang and W. Shi, “Detection of ice and mixed ice-water pixels for MODIS ocean color data processing,” IEEE Trans. Geosci. Remote Sens. 47, 2510–2518 (2009). [CrossRef]
  26. W. Shi and M. Wang, “Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 1. Satellite algorithm development,” J. Mar. Syst. 95, 32–40 (2012). [CrossRef]
  27. W. Shi and M. Wang, “Sea ice properties in the Bohai sea measured by MODIS-Aqua: 2. Study of sea ice seasonal and interannual variability,” J. Mar. Syst. 95, 41–49 (2012). [CrossRef]
  28. M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Remote Sens. 50, 3280–3292 (2012). [CrossRef]
  29. S. Ramachandran and M. Wang, “Near-real-time ocean color data processing using ancillary data from the Global Forecast System model,” IEEE Trans. Geosci. Remote Sens. 49, 1485–1495 (2011). [CrossRef]
  30. A. Morel and G. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef]
  31. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241–248 (2005). [CrossRef]
  32. M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45, 4122–4128 (2006). [CrossRef]
  33. IOCCG, “Atmospheric correction for remotely-sensed ocean-colour products,” in Reports of International Ocean-Colour Coordinating Group, , M. Wang, ed. (IOCCG, Dartmouth, Canada, 2010).
  34. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102, 17209–17217 (1997). [CrossRef]
  35. , Joint Polar Satellite System VIIRS Cloud Mask Algorithm Theoretical Basis Document (NASA/GSFC, 2012).
  36. , Joint Polar Satellite System VIIRS Radiometric Calibration Algorithm Theoretical Basis Document (NASA/GSFC, 2012).
  37. H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265–278 (1998). [CrossRef]
  38. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II: vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001). [CrossRef]
  39. M. Wang and H. R. Gordon, “Calibration of ocean color scanners: How much error is acceptable in the near-infrared,” Remote Sens. Environ. 82, 497–504 (2002). [CrossRef]
  40. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007). [CrossRef]
  41. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited