OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters

Qian Yang, Dariusz Stramski, and Ming-Xia He  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 359-374 (2013)
http://dx.doi.org/10.1364/AO.52.000359


View Full Text Article

Enhanced HTML    Acrobat PDF (1483 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A radiative transfer model was applied to examine the effects of vertically stratified inherent optical properties of the water column associated with near-surface plumes of suspended particulate matter on spectral remote-sensing reflectance, Rrs(λ), of coastal marine environments. The simulations for nonuniform ocean consisting of two layers with different concentrations of suspended particulate matter (SPM) are compared with simulations for a reference homogeneous ocean whose SPM is identical to the surface SPM of the two-layer cases. The near-surface plumes of particles are shown to exert significant influence on Rrs(λ). The sensitivity of Rrs(λ) to vertical profile of SPM is dependent on the optical beam attenuation coefficient within the top layer, c1(λ), thickness of the top layer, z1, and the ratio of SPM in the underlying layer to that in the top layer, SPM2/SPM1, as well as the wavelength of light, λ. We defined a dimensionless spectral parameter, P(λ)=c1(λ)×z1×(SPM2/SPM1), to quantify and examine the effects of these characteristics of the two-layer profile of SPM on the magnitude and spectral shape of Rrs(λ). In general, the difference of Rrs(λ) between the two-layer and uniform ocean decreases to zero with an increase in P(λ). For the interpretation of ocean color measurements of water column influenced by near-surface plumes of particles, another dimensionless parameter P(λ) was introduced, which is a product of terms representing homogenous ocean and a change caused by the two-layer structure of SPM. Based on the analysis of this parameter, we found that for the two-layer ocean there is a good relationship between Rrs(λ) in the red and near-infrared spectral regions and the parameters describing the SPM(z) profile, i.e., SPM1, SPM2, and z1.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: August 10, 2012
Manuscript Accepted: November 18, 2012
Published: January 11, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Qian Yang, Dariusz Stramski, and Ming-Xia He, "Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters," Appl. Opt. 52, 359-374 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-3-359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000). [CrossRef]
  2. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef]
  3. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  4. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  5. D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999). [CrossRef]
  6. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008). [CrossRef]
  7. H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001). [CrossRef]
  8. D. Doxaran, J.-M. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002). [CrossRef]
  9. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373–383 (2005). [CrossRef]
  10. T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988). [CrossRef]
  11. J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010). [CrossRef]
  12. W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990). [CrossRef]
  13. M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004). [CrossRef]
  14. J. Gower, S. King, and P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI,” Int. J. Remote Sens. 29, 6209–6216 (2008). [CrossRef]
  15. F. E. Muller-Karger, P. L. Richardson, and D. J. McGillicuddy, “On the offshore dispersal of the Amazon’s Plume in the North Atlantic: comments on the paper by A. Longhurst, ‘Seasonal cooling and blooming in tropical oceans’,” Deep-Sea Res. Part A. 42, 2127–2131 (1995). [CrossRef]
  16. N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005). [CrossRef]
  17. H. R. Gordon and O. B. Brown, “Diffuse reflectance of the ocean: some effects of vertical structure,” Appl. Opt. 14, 2892–2895 (1975). [CrossRef]
  18. J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005). [CrossRef]
  19. W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987). [CrossRef]
  20. H. R. Gordon and W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975). [CrossRef]
  21. J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979). [CrossRef]
  22. J. J. Cullen and R. W. Eppley, “Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance,” Oceanol. Acta 4, 23–32 (1981).
  23. H. R. Gordon, “Remote sensing of optical properties in continuously stratified waters,” Appl. Opt. 17, 1893–1897 (1978). [CrossRef]
  24. H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428–3430 (1980). [CrossRef]
  25. S. Sathyendranath and T. Platt, “Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile,” Appl. Opt. 28, 490–495 (1989). [CrossRef]
  26. J.-M. André, “Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments,” Deep-Sea Res. Part A. 39, 763–779 (1992). [CrossRef]
  27. P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008). [CrossRef]
  28. M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens. 24, 519–534 (2003). [CrossRef]
  29. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992). [CrossRef]
  30. J. Piskozub, T. Neumann, and L. Woźniak, “Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16, 14683–14688 (2008). [CrossRef]
  31. M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44, 1735–1747 (2005). [CrossRef]
  32. L. Nanu and C. Robertson, “The effect of suspended sediment depth distribution on coastal water spectral reflectance: theoretical simulation,” Int. J. Remote Sens. 14, 225–239 (1993). [CrossRef]
  33. S. Tassan, “A numerical model for the detection of sediment concentration in stratified river plumes using Thematic Mapper data,” Int. J. Remote Sens. 18, 2699–2705 (1997). [CrossRef]
  34. C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 User’s Guide (Sequoia Scientific, 2008).
  35. C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).
  36. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural-waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981). [CrossRef]
  37. F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997). [CrossRef]
  38. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  39. D. J. Segelstein, “The complex refractive index of water,” M. S. Thesis (University of Missouri-Kansas City, 1981).
  40. S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010). [CrossRef]
  41. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003). [CrossRef]
  42. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  43. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002). [CrossRef]
  44. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44, 1667–1680 (2005). [CrossRef]
  45. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef]
  46. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery-A Review (Springer-Verlag, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited