OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Toward a super imaging system [Invited]

David Mendlovic  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. 561-566 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (709 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper deals with the fast-developing area of computational photography where a combination of imaging techniques and efficient image processing algorithms is done to generate a super imaging system. In recent years, three main implementations of the computational photography philosophy were intensively investigated and demonstrated: (i) multiple aperture, (ii) light field photography, and (iii) multiexposure. The paper provides a mini-review of these three approaches and shows ways to improve and combine them toward a super imaging system. As a conclusion, the paper provides preliminary guidelines for fusing the three approaches into one integrated super imaging system with optimized performance.

© 2013 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.6640) Image processing : Superresolution
(110.1758) Imaging systems : Computational imaging
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Image Processing

Original Manuscript: October 2, 2012
Manuscript Accepted: November 8, 2012
Published: January 24, 2013

Virtual Issues
(2013) Advances in Optics and Photonics
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

David Mendlovic, "Toward a super imaging system [Invited]," Appl. Opt. 52, 561-566 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kidjer, “Principles of lens design,” Proc. SPIE CR4, 30–52 (1992).
  2. J. Mait, R. Athale, and J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Express 11, 2093–2101 (2003). [CrossRef]
  3. A. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, 1989).
  4. E. Dowski and T. Chathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef]
  5. K. H. Brenner, A. W. Lohmann, and J. Ojeda-Castaneda, “The ambiguity function as polar display of OTF,” Opt. Commun. 44, 323–326 (1983). [CrossRef]
  6. T. Chathey, E. R. Dowski, and A. R. Fitz Gerrrell, “Optical/digital aberration control in incoherent optical system,” Proc. SPIE 2730, 120–126 (1996). [CrossRef]
  7. J. Tanida, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813, (2001). [CrossRef]
  8. Y. Kitamura, “Reconstruction of a high resolution image on a compound eye image capturing system,” Appl. Opt. 43, 1719–1727, (2004). [CrossRef]
  9. K. Nitta and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006). [CrossRef]
  10. J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes—topical review,” Bioinspir. Biomim. 1, R1–R16 (2006).
  11. J. W. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, P. Nussbaum, F. Heitger, and A. Tünnermann, “Ultra thin camera based on artificial apposition compound eyes,” http://www.suss-microoptics.com/media/downloads/publications/MOC-04_Duparre.pdf .
  12. D. Capel and A. Zisserman, “Computer vision applied to super-resolution,” IEEE Signal Process. Mag. 20(3), 75–86 (2003). [CrossRef]
  13. A. Kanaev, J. Ackerman, E. Fleet, and D. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007). [CrossRef]
  14. M. Shankar, R. Willet, N. Pitslanis, T. Schulz, R. Gibbons, R. T. Kolste, J. Carrier, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008). [CrossRef]
  15. J. Tanida, R. Shogenji, Y. Kitamura, K. Yamada, M. Miyamoto, and S. Miyatake, “Color imaging with an integrated compound imaging system,” Opt. Express 11, 2109–2117, (2003). [CrossRef]
  16. P. Jorge and S. Ferreira, “Interpolation and the discrete Papoulis-Gerchberg algorithm,” IEEE Trans. Signal Process. 42, 2596–2606 (1994). [CrossRef]
  17. S. Mendelowitz, “Image reconstruction algorithm designed for the TOMBO system,” M. Sc. Thesis (Tel Aviv University, 2011).
  18. F. N. Lanchester, English Patent No. 16548/95 (1895).
  19. R. E. Liesegang, British J. Photography 43, 569 (1896).
  20. J. A. C. Branfill, British J. Photography 44, 142 (1897).
  21. P. E. Ives, “Parallax stereogram and process of making same,” English Patent No. 725567 (14April1903).
  22. E. H. Adelson and Y. A. Wang, “Single lens stereo with plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992). [CrossRef]
  23. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanaran, “Light field photography with a hand-held plenoptic camera,” Stanford Tech Report CTSR 2005-02, (Stanford University, 2005).
  24. R. Ng, “Digital light field photography,” Ph.D. dissertation (Stanford University, 2006).
  25. R. Raskar, A. Agrawal, C. Wilson, and A. Veeraraghavan, “Glare aware photography: 4D ray sampling for reducing glare effects of camera lenses.” ACM Trans. Graph. 27, 56 (2008). [CrossRef]
  26. Z. Zhang and M. Levoy, “Wigner distributions and how they relate to the light field,” in Proceedings of the IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–9.
  27. A. Davis, M. Levoy, and F. Durand, “Unstructured light fields,” Comput. Graph. Forum 31, 305–314 (2012). [CrossRef]
  28. “Light field based commercial digital still camera,” http://www.lytro.com .
  29. R. Szeliski, Image Alignment and Stitching: A Tutorial (Now Publishers, 2006).
  30. M. Robinson and D. Stork, “Joint digital-optical design of super resolution multi frame imaging systems,” Appl. Opt. 47, B11–B20 (2008). [CrossRef]
  31. R. Raskar, “Coded exposure photography: motion deblurring using fluttered shutter,” in SIGGRAPH 2006 Conference Proceedings (ACM, 2006), pp. 795–804.
  32. I. Gur and D. Mendlovic, “Diffraction limited top-hat generator,” Opt. Commun. 145, 237–248 (1998). [CrossRef]
  33. U. Levy, E. Marom, and D. Mendlovic, “Simultaneous multicolor image formation with a single diffractive optical element,” Opt. Lett. 26, 1149–1151 (2001). [CrossRef]
  34. U. Levy, E. Marom, and D. Mendlovic, “Thin element approximation for the analysis of blazed grating: simplified model and validity limits,” Opt. Commun. 229, 11–21 (2004). [CrossRef]
  35. R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in Proceedings of the IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.
  36. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer-Verlag, 2003), pp. 183–194.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited