## List of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus [Invited]

Applied Optics, Vol. 52, Issue 5, pp. 897-916 (2013)

http://dx.doi.org/10.1364/AO.52.000897

Enhanced HTML Acrobat PDF (361 KB)

### Abstract

The expression “generalized Lorenz–Mie theories” generically denotes a class of light-scattering theories describing the interaction between an illuminating electromagnetic arbitrary-shaped beam and a particle possessing a high degree of symmetry. This allows one to use the method of separation of variables in which the illuminating beam is expressed as an expansion over a set of basis functions. Such theories have been derived and applied over the past 35 years. Although, as a whole, these theories are now well developed, there remains a list of problems to be solved, some of which are described in this paper.

© 2013 Optical Society of America

**OCIS Codes**

(260.2110) Physical optics : Electromagnetic optics

(290.4020) Scattering : Mie theory

(140.3295) Lasers and laser optics : Laser beam characterization

**ToC Category:**

Scattering

**History**

Original Manuscript: August 14, 2012

Manuscript Accepted: September 21, 2012

Published: February 6, 2013

**Virtual Issues**

(2013) *Advances in Optics and Photonics*

Vol. 8, Iss. 3 *Virtual Journal for Biomedical Optics*

**Citation**

Gérard Gouesbet and James A. Lock, "List of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus [Invited]," Appl. Opt. **52**, 897-916 (2013)

http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-5-897

Sort: Year | Journal | Reset

### References

- Y. Yeh and H. Cummins, “Localized fluid flow measurements with a He–Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964). [CrossRef]
- L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
- F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981).
- H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement (Springer, 2003).
- G. Gouesbet and A. Berlemont, “Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows,” Prog. Energy Combust. Sci. 25, 133–159(1999). [CrossRef]
- G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase-Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993). [CrossRef]
- G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry,” Part. Part. Syst. Charact. 11, 133–144 (1994). [CrossRef]
- G. Gréhan, K. F. Ren, G. Gouesbet, A. Naqwi, and F. Durst, “Evaluation of a particle sizing technique based on laser sheets,” Part. Part. Syst. Charact. 11, 101–106 (1994). [CrossRef]
- G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).
- G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
- B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988). [CrossRef]
- G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. 13, 97–103 (1982). [CrossRef]
- F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef]
- Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997). [CrossRef]
- H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998). [CrossRef]
- G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997). [CrossRef]
- G. Gouesbet and G. Gréhan, “Interaction between shaped beams and an infinite cylinder, including a discussion of Gaussian beams,” Part. Part. Syst. Charact. 11, 299–308 (1994). [CrossRef]
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of a GLMT, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997). [CrossRef]
- L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999). [CrossRef]
- G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999). [CrossRef]
- G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long cylinders with elliptical cross-sections. Erratum,” J. Opt. Soc. Am. A 22, 574–575 (2005). [CrossRef]
- G. Gouesbet, L. Méès, and G. Gréhan, “Partial-wave description of shaped beams in elliptical-cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998). [CrossRef]
- G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates, J. Opt. A 1, 706–712 (1999). [CrossRef]
- G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).
- J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distributions,” J. Opt. Soc. Am. A 28, 24–39 (2011). [CrossRef]
- J. J. Wang, G. Gouesbet, G. Gréhan, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam,” J. Opt. Soc. Am. A 28, 1849–1859 (2011). [CrossRef]
- J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
- J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
- J. S. Kim and S. S. Lee, “Scattering of laser beam and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. A 73, 303–312 (1983). [CrossRef]
- J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997). [CrossRef]
- J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997). [CrossRef]
- J. P. Barton, “Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam,” J. Opt. Soc. Am. A 16, 160–166(1999). [CrossRef]
- J. Mroczka and D. Wysoczanski, “Plane-wave and Gaussian-beam scattering on an infinite cylinder,” Opt. Eng. 39, 763–770 (2000). [CrossRef]
- M. Venkatapathi, G. Gregori, K. Ragheb, J. P. Robinson, and E. D. Hirleman, “Measurement and analysis of angle-resolved scatter from small particles in a cylindrical microchannel,” Appl. Opt. 45, 2222–2231 (2006). [CrossRef]
- M. Venkatapathi and E. D. Hirleman, “Effect of beam size parameters on internal fields in an infinite cylinder irradiated by an elliptical Gaussian beam,” J. Opt. Soc. Am. A 24, 3366–3370 (2007). [CrossRef]
- Y. P. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,” IEEE Trans. Antennas Propag. 49, 615–620 (2001). [CrossRef]
- G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008). [CrossRef]
- G. X. Han and Y. P. Han, “Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam,” Acta Phys. Sinica 58, 6167–6173 (2009).
- B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705 (2009). [CrossRef]
- H. Y. Li and Z. S. Wu, “Electromagnetic scattering by multi-layered spheres in a 2D Gaussian beam,” Acta Phys. Sinica 57, 833–838 (2008).
- O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009). [CrossRef]
- H. Y. Li, Z. S. Wu, and Z. J. Li, “Scattering from a multi-layered sphere located in a high-order Hermite-Gaussian beam,” Chin. Phys. Lett. 26, 104203 (2009). [CrossRef]
- H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. Electromagn. Waves Appl. 24, 2037–2047 (2010).
- H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008). [CrossRef]
- P. Y. Wei, X. M. Sun, J. Shen, and H. Y. Zhang, “Scattering by a conducting infinite cylinder illuminated with a shaped beam,” J. Infrared Millim. Terahertz Waves 30, 642–649(2009). [CrossRef]
- M. Wang, H. Zhang, Y. Han, and Y. Li, “Scattering of shaped beam by a conducting infinite cylinder with dielectric coating,” Appl. Phys. B 96, 105–109 (2009). [CrossRef]
- H. Y. Li, Z. S. Wu, and Z. J. Li, “Relation between Debye series and generalized Lorenz–Mie theory of laser beam scattering by multilayer cylinder,” Chin. Phys. B 19, 104202 (2010). [CrossRef]
- H. Y. Zhang, Y. F. Sun, and Z. X. Huang, “Scattering by a multilayered infinite cylinder arbitrarily illuminated with a shaped beam,” IEEE Trans. Antennas Propag. 59, 4369–4371 (2011). [CrossRef]
- X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering by an infinite cylinder arbitrarily illuminated with a couple of Gaussian beams,” J. Electromagn. Waves Appl. 24, 1329–1339 (2010). [CrossRef]
- G. X. Han and Y. P. Han, “Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam,” Acta Phys. Sinica 59, 2434–2442 (2010).
- G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A 1, 706–712 (1999). [CrossRef]
- L. Boyde, K. J. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary three-dimensional aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011). [CrossRef]
- Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26, 1778–1787 (2009). [CrossRef]
- Q. K. Yuan, Z. S. Wu, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27, 1457–1465 (2010). [CrossRef]
- Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011). [CrossRef]
- Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express 19, 16044–16057 (2011). [CrossRef]
- P. Debye, “Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens,” Phys. Zeitung 9, 775–778(1908).
- G. Gouesbet, “Debye series formulation for generalized Lorenz–Mie theory with the Bromwich method,” Part. Part. Syst. Charact. 20, 382–386 (2003). [CrossRef]
- J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997). [CrossRef]
- F. Xu, J. Lock, and C. Tropea, “Debye series for light scattering by a spheroid,” J. Opt. Soc. Am. A 27, 671–686 (2010). [CrossRef]
- F. Xu, J. A. Lock, and G. Gouesbet, “Debye series for light scattering by a nonspherical particle,” Phys. Rev. A 81, 043824 (2010). [CrossRef]
- F. Xu and J. A. Lock, “Debye series for light scattering by a coated nonspherical particle,” Phys. Rev. A 81, 063812 (2010). [CrossRef]
- G. Gouesbet, G. Gréhan, and B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, 1991), pp. 339–384.
- G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” Part. Part. Syst. Charact. 11, 22–34 (1994). [CrossRef]
- G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000). [CrossRef]
- G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009). [CrossRef]
- J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009). [CrossRef]
- G. Gouesbet, “A scientific and sociological story of generalized Lorenz–Mie theories,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
- G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates, “Opt. Commun. 283, 517–521 (2010). [CrossRef]
- G. Gouesbet, “Partial wave expansions and properties of axisymmetric light beams,” Appl. Opt. 35, 1543–1555(1996). [CrossRef]
- G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996). [CrossRef]
- G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988). [CrossRef]
- G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. 19, 35–48 (1988). [CrossRef]
- G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]
- K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
- A. Doicu and T. Wriedt, “Computation of the beam-shape-coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997). [CrossRef]
- H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008). [CrossRef]
- L. Boyde, K. J. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011). [CrossRef]
- Y. P. Han, H. Zhang, and G. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007). [CrossRef]
- Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381(2009). [CrossRef]
- G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system. I General formulation,” Opt. Commun. 283, 3218–3225 (2010). [CrossRef]
- J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010). [CrossRef]
- G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: III. Special values of Euler angles,” Opt. Commun. 283, 3235–3243 (2010). [CrossRef]
- G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010). [CrossRef]
- G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in general Lorenz–Mie theories through rotations of coordinate system: V. Localized beam models,” Opt. Commun. 284, 411–417 (2011). [CrossRef]
- J. Chen, J. Ng, P. Wang, and Z. Lin, “Analytical partial wave expansion of vector Bessel beam and its application to optical binding,” Opt. Lett. 35, 1674–1676 (2010). [CrossRef]
- G. Gortzel, “Angular correlation of gamma rays,” Phys. Rev., Appendix 1 70, 897–909 (1946). [CrossRef]
- L. C. Biedenharn and M. E. Rose, “Theory of angular correlations of nuclear radiations,” Rev. Mod. Phys. 25, 729–777 (1953). [CrossRef]
- J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres part 1—Multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–389 (1971). [CrossRef]
- D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
- K. A. Fuller, “Scattering and absorption cross sections of compound spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994). [CrossRef]
- J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
- A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H de Brito Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006). [CrossRef]
- A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals, J. Phys. A 39, L293–L296 (2006). [CrossRef]
- W. L. Moreira, A. A. R. Neves, M. K. Garbos, T. G. Euser, P. St. J. Russell, and C. L. Cesar, “Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions,” http://www.arxiv.org/abs/1003.2392v2 , accessed 30April, 2010.
- S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85159–161 (1991). [CrossRef]
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979). [CrossRef]
- G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef]
- J. A. Lock, “Beam shape coefficients of the most general focused Gaussian focused laser beam for light scattering applications,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Laser sheet scattering by spherical particles,” Part. Part. Syst. Charact. 10, 146–151 (1993). [CrossRef]
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Electromagnetic field expression of a laser sheet and the order of approximation,” J. Opt. 25, 165–176 (1994). [CrossRef]
- J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989). [CrossRef]
- G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: A review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011). [CrossRef]
- C. Flammer, “Spheroidal Wave Functions (Dover, 2005).
- Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001). [CrossRef]
- Y. P. Han and Z. S. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002). [CrossRef]
- Y. P. Han, L. Mees, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002). [CrossRef]
- Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian beam illumination,” Appl. Opt. 42, 6621–6629 (2003). [CrossRef]
- Y. P. Han, L. Mees, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, “Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz–Mie theory framework,” Opt. Commun. 231, 71–77 (2004). [CrossRef]
- Y. P. Han, “An approach to expand the beam coefficients for arbitrarily shaped beam,” Acta Phys. Sinica 54, 5139–5143 (2005).
- H. Y. Zhang and Y. P. Han, “Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam,” IEEE Trans. Antennas Propag. 53, 1514–1518 (2005).
- Y. Han, H. Zhang, and X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries,” Appl. Phys. B 84, 485–492 (2006). [CrossRef]
- Y. P. Han, L. Mees, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006). [CrossRef]
- X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering of Gaussian beam by a conducting spheroidal particle with confocal dielectric coating,” J. Infrared Millim. Terahertz Waves 31, 1100–1108 (2010). [CrossRef]
- H. Y. Zhang and Y. F. Sun, “Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model,” J. Opt. Soc. Am. B 27, 883–887(2010). [CrossRef]
- B. Yan, H. Y. Zhang, and C. H. Liu, “Gaussian beam scattering by a spheroidal particle with an embedded conducting sphere,” J. Infrared Millim. Terahertz Waves 32, 126–133(2011). [CrossRef]
- B. Yan, H. Y. Zhang, and C. H. Liu, “Scattering of a Gaussian beam by a spheroidal particle with a spherical inclusion at the center,” Opt. Commun. 284, 3811–3815 (2011). [CrossRef]
- H. Y. Zhang, Z. X. Huang, and Y. F. Sun, “Scattering of a Gaussian beam by a conducting spheroidal particle with non-confocal dielectric coating,” IEEE Trans. Antennas Propag. 59, 4371–4374 (2011). [CrossRef]
- H. Y. Zhang and T. Q. Liao, “Scattering of a Gaussian beam by a spherical particle with a spheroidal inclusion,” J. Quant. Spectrosc. Radiat. Transfer 112, 1486–1491 (2011). [CrossRef]
- H. H. Wang, X. M. Sun, and H. Y. Zhang, “Scattering by a spheroidal particle illuminated with a couple of on-axis Gaussian beam,” Opt. Laser Technol. 44, 1290–1293 (2012). [CrossRef]
- M. J. Mendes, I. Tobias, A. Marti, and A. Luque, “Near-field scattering by dielectric spheroidal particles with sizes on the order of the illuminating wavelength,” J. Opt. Soc. Am. B 27, 1221–1231 (2010). [CrossRef]
- F. Xu, K. F. Ren, and X. S. Cai, “Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,” J. Opt. Soc. Am. A 24, 109–118 (2007). [CrossRef]
- F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located and shaped beam scattering by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007). [CrossRef]
- F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007). [CrossRef]
- F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008). [CrossRef]
- G. Gouesbet and J. J. Wang, “On the structures of some light scattering theories depending on whether or not the Bromwich formulation may be used, e.g., spherical versus spheroidal coordinates,” Opt. Commun. 285, 4200–4206 (2012). [CrossRef]
- T. J. Bromwich, “Electromagnetic waves,” Philos. Mag. 38, 143–164 (1919). [CrossRef]
- F. E. Borgnis, “Elektromagnetische Eigenschwingungen dielektrischer Raüme,” Ann. Phys. 35, 359–384 (1939). [CrossRef]
- P. Poincelot, Précis Délectromagnétisme Théorique (Masson, 1965).
- H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
- G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef]
- J. A. Lock and G. Gouesbet, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
- G. Gouesbet and J. A. Lock, “Rigorous justication of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
- G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
- G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999). [CrossRef]
- J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012). [CrossRef]
- J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef]
- G. Gouesbet, “Validity of the cylindrical localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for circular cylinders,” J. Mod. Opt. 46, 1185–1200 (1999).
- G. Gouesbet and L. Méès, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999). [CrossRef]
- G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996). [CrossRef]
- F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991). [CrossRef]
- J. A. Lock, Partial-wave expansions of angular spectra of plane waves,” J. Opt. Soc. Am. A 23, 2803–2809 (2006). [CrossRef]
- S. Colak, C. Yeh, and L. W. Casperson, “Scattering of focused beams by tenuous particles,” Appl. Opt. 18, 294–302(1979). [CrossRef]
- C. W. Yeh, S. Colak, and P. W. Barber, “Scattering of sharply focused beam by arbitrarily shaped dielectric particles: an exact solution,” Appl. Opt. 21, 4426–4433 (1982). [CrossRef]
- E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992). [CrossRef]
- E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993). [CrossRef]
- E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994). [CrossRef]
- R. P. Ratowsky, L. Yang, R. J. Deri, J. S. Kallman, and G. Trott, “Ball lens reflections by direct solution of Maxwell’s equations,” Opt. Lett. 20, 2048–2050 (1995). [CrossRef]
- R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott, “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements,” Appl. Opt. 36, 3435–3438 (1997). [CrossRef]
- A. Doicu and T. Wriedt, “Plane wave spectrum of electromagnetic beams,” Opt. Commun. 136, 114–124 (1997). [CrossRef]
- J. A. Lock, “Calculation of the radiation trap force for laser tweezers by use of generalized Lorenz–Mie theory: I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544(2004). [CrossRef]
- J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by an optically trapped particle,” Appl. Opt. 45, 3634–3645 (2006). [CrossRef]
- A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E 76, 061917 (2007). [CrossRef]
- A. A. R. Neves, A. Fontes, L. D. Y. Pozzo, A. A. de Thomas, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006). [CrossRef]
- G. Gouesbet, “ The separability theorem revisited with applications to light scattering theory,” J. Opt. 26, 123–135 (1995). [CrossRef]
- G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995). [CrossRef]
- E. Lenglart and G. Gouesbet, “The separability ‘theorem’ in terms of distributions with discussion of electromagnetic scattering theory,” J. Math. Phys. 37, 4705–4710 (1996). [CrossRef]
- G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999). [CrossRef]
- G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999). [CrossRef]
- M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).
- M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).
- A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).
- Y. P. Han, Z. W. Cui, and G. Gouesbet, “Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure,” J. Quant. Spectrosc. Radiat. Transfer 113, 1719–1727 (2012). [CrossRef]
- T. Takenaka, M. Yokota, and O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985). [CrossRef]
- A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992). [CrossRef]
- S. R. Seshadri, “Nonparaxial corrections for the fundamental Gaussian beam,” J. Opt. Soc. Am. A 19, 2134–2141 (2002). [CrossRef]
- E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959). [CrossRef]
- B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
- P. Torok, R. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: Structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995). [CrossRef]
- P. Torok, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef]
- A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001). [CrossRef]
- A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002). [CrossRef]
- J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory: II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004). [CrossRef]
- J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34, 2120–2132 (1995). [CrossRef]
- J. A. Lock and J. T. Hodges, “Far-field scattering of an axisymmetric laser beam of arbitrary prole by an on-axis spherical particle,” Appl. Opt. 35, 4283–4290 (1996). [CrossRef]
- G. Gouesbet,” Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: I. Measurements,” Part. Part. Syst. Charact. 14, 12–20 (1997).
- G. Gouesbet, “Measurements of beam shape coefficients in generalized Lorenz–Mie theory and the density-matrix approach: II. The density matrix approach,” Part. Part. Syst. Charact. 14, 88–92 (1997).
- H. Polaert, G. Gouesbet, and G. Gréhan, “Measurements of beam shape coefficients in the generalized Lorenz–Mie theory for the on-axis case: numerical simulations,” Appl. Opt. 37, 5005–5013 (1998). [CrossRef]
- H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam shape coefficients for use in generalized Lorenz–Mie theory,” Appl. Opt. 40, 1699–1706 (2001). [CrossRef]
- F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: I. Homogeneous sphere,” Phys. Rev. A 79, 053808 (2009). [CrossRef]
- Q. C. Shang, Z. S. Wu, Z. J. Li, and H. A. Li, “Radiation force on a chiral sphere by a Gaussian beam,” Proc. SPIE 7845, 78452B (2010). [CrossRef]
- R. X. Li, X. E. Han, and K. F. Ren, “Debye series analysis of radiation pressure force exerted on a multilayered sphere,” Appl. Opt. 49, 955–963 (2010). [CrossRef]
- L. A. Ambrosio and H. E. Hernandez-Figueroa, “Fundamentals of negative refractive index optical trapping: Forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz–Mie theory,” Biomed. Opt. Express 1, 1284–1301 (2010). [CrossRef]
- Y. G. Du, Y. P. Han, G. X. Han, and J. J. Li, “Theoretical study on the rotation of particles driven by Gaussian beam,” Acta Phys. Sinica 60, 028702 (2011).
- L. A. Ambrosio and H. E. Hernandez-Figueroa, “Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces,” Biomed. Opt. Express 2, 1893–1906 (2011). [CrossRef]
- L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011). [CrossRef]
- L. A. Ambrosio and H. E. Hernandez-Figueroa, “Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles,” Biomed. Opt. Express 2, 2354–2363 (2011). [CrossRef]
- A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
- A. Ashkin, “Forces on a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
- Y. Harada and T. Asakura,” Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
- G. Gouesbet, C. Rozé, and S. Meunier-Guttin-Cluzel, “Instabilities by local heating below an interface, a review,” J. Nonequilib. Thermodyn. 25, 337–379 (2000). [CrossRef]
- G. Gouesbet, S. Meunier-Guttin-Cluzel, and O. Ménard, “Global reconstruction of equations of motion from data series, and validation techniques, a review,” in Chaos and Its Reconstruction (Novascience, 2003), pp. 1–160.
- J. U. Nöckel and A. D. Stone, “Chaotic light: a theory of asymmetric resonant cavities,” Optical Processes in Microcavities (World Scientific, 1996), pp. 389–426.
- J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Lett. Nature 385, 45–47 (1997). [CrossRef]
- A. D. Stone and J. U. Nöckel, “Asymmetric resonant optical cavities,” Opt. Photon. News 8, 37–38 (1997). [CrossRef]
- A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995). [CrossRef]
- J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q-spoiling and directionality in deformed ring cavities,” Opt. Lett. 19, 1693–1695 (1994). [CrossRef]
- J. M. Jensen, Chaotic scattering of light by a dielectric cylinder,” J. Opt. Soc. Am. A 10, 1204–1208 (1993). [CrossRef]
- G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001). [CrossRef]
- G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001). [CrossRef]
- G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphologydependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located spherical inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242 (2002). [CrossRef]
- M. Hentschel and K. Richter, “Quantum chaos in optical systems: The annular billiard,” Phys. Rev. E 66, 056207 (2002). [CrossRef]
- A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “Annular billiard dynamics in a circularly polarized strong laser field,” Phys. Rev. E 85, 016204 (2012). [CrossRef]
- C. Jung and S. Pott, “Classical cross section for chaotic potential scattering,” J. Phys. A 22, 2925–2938 (1989). [CrossRef]
- S. Bleher, C. Grebogi, and E. Ott, “Bifurcation to chaotic scattering,” Phys. D 46, 87–121 (1990). [CrossRef]
- V. Daniels, M. Vallières, and J. M. Yuan, “Chaotic scattering on a double well: periodic orbits, symbolic dynamics, and scaling,” Chaos 3, 475–485 (1993). [CrossRef]
- G. Gouesbet and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. 17, 213–224 (2000). [CrossRef]
- G. Gouesbet, L. Mees, and G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for pulsed laser illumination,” in Laser Techniques for Fluid Mechanics, R. J. Adrian, D.F.G. Durao, Durst, M. V. Heitor, M. Maeda, C. Tropea, and J. H. Whitelaw, eds. (Springer, 2002), pp. 175–188.
- L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59–65 (2001). [CrossRef]
- L. Méès, G. Gouesbet, and G. Gréhan, “Scattering of laser pulses (plane wave and focused Gaussian beams) by spheres,” Appl. Opt. 40, 2546–2550 (2001). [CrossRef]
- L. Méès, G. Gouesbet, and G. Gréhan, “Interaction between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001). [CrossRef]
- L. Méès, G. Gouesbet, and G. Gréhan, “Numerical predictions of microcavity internal fields created by femtosecond pulses, with emphasis on whispering gallery modes,” J. Opt. A 4, 8150–8153 (2002).
- A. R. Jones, “Some calculations on the scattering efficiencies of a sphere illuminated by an optical pulse,” J. Phys. D 40, 7306–7312 (2007). [CrossRef]
- L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009). [CrossRef]
- S. Bakic, F. Xu, N. Damaschke, and C. Tropea, “Feasibility of extending rainbow refractometry to small particles using femtosecond laser pulses,” Part. Part. Syst. Charact. 26, 34–40 (2009). [CrossRef]
- Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Whispering-gallery mode excitation in a microdroplet illuminated by a train of chirped ultrashort laser pulses,” Appl. Opt. 48, 5842–5848 (2009). [CrossRef]
- L. P. Su, S. Y. Chen, W. J. Zhao, and D. M. Ren, “Scattering properties of ultrashort laser pulses by air bubbles in the sea water,” Proc. SPIE 8192, 81922K (2011). [CrossRef]
- C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25, 1541–1550 (2008). [CrossRef]
- S. Bakic, C. Heinisch, N. Damaschke, T. Tschudi, and C. Tropea, “Time integrated detection of femtosecond laser pulses scattered by small droplets,” Appl. Opt. 47, 523–530(2008). [CrossRef]
- L. Méès, J. P. Wolf, G. Gouesbet, and G. Gréhan, “Two-photon absorption and fluorescence in a spherical micro-cavity illuminated by using two laser pulses: numerical simulations,” Opt. Commun. 208, 371–375 (2002). [CrossRef]
- L. Méès, “Diffusion de la lumière par des objets cylindriques: Simulations par théorie de Lorenz–Mie généralisée et applications métrologiques,” Ph.D. thesis (Rouen University, 2000).
- C. Yeh, “The diffraction of waves by a penetrable ribbon,” J. Math. Phys. 4, 65–71 (1963). [CrossRef]
- J. B. Guidt, G. Gouesbet, and J. N. Le Toulouzan, “An accurate validation of visible infra-red double extinction simultaneous measurements of particle sizes and number-densities by using densely laden standard media,” Appl. Opt. 29, 1011–1022 (1990). [CrossRef]
- L. L. Foldy, “The multiple scattering of waves,” Phys. Rev. E 67, 107–119 (1945). [CrossRef]
- A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 77–80.
- V. Twersky, “On scattering of waves by random distributions. I. Free-space scatterer formalism,” J. Math. Phys. 3, 700–715 (1962). [CrossRef]
- V. Twersky, “On propagation in random media of discrete scatterers,” in Stochastic Processes in Mathematical Physics and Engineering, Proceedings of Symposia in Applied Mathematics, Vol. XVI, R. Bellman, ed. (American Mathematical Society, 1964), pp. 84–116.
- A. Ishimaru, “Plane wave incidence on a slab of scatterers—total intensity,” in Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 268–274.
- A. Ishimaru, “Transport theory of wave propagation in random particles,” in Wave Propagation and Scattering in Random Media (Academic, 1978), pp. 147–148.
- R. Botet, P. Rannou, and M. Cabane, “Mean-field approximation of Mie scattering by fractal aggregates of identical spheres,” Appl. Opt. 36, 8791–8797 (1997). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

OSA is a member of CrossRef.