OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Experimental study of z resolution in acousto-optical coherence tomography using random phase jumps on ultrasound and light

Max Lesaffre, Salma Farahi, François Ramaz, and Michel Gross  »View Author Affiliations


Applied Optics, Vol. 52, Issue 5, pp. 949-957 (2013)
http://dx.doi.org/10.1364/AO.52.000949


View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Acousto-optical coherence tomography (AOCT) is a variant of acousto-optic imaging (also called ultrasound modulated optical tomography) that makes possible to get resolution along the ultrasound propagation axis z. We present here AOCT experimental results, and we study how the z resolution depends on time step between phase jumps Tϕ, or on the correlation length Δz. By working at low resolution, we perform a quantitative comparison of the z measurements with the theoretical point spread function. We also present images recorded with different z resolution, and we qualitatively show how the image quality varies with Tϕ, or Δz.

© 2013 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(110.7170) Imaging systems : Ultrasound
(160.5320) Materials : Photorefractive materials
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Imaging Systems

History
Original Manuscript: October 20, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: December 12, 2012
Published: February 7, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Max Lesaffre, Salma Farahi, François Ramaz, and Michel Gross, "Experimental study of z resolution in acousto-optical coherence tomography using random phase jumps on ultrasound and light," Appl. Opt. 52, 949-957 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-5-949


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995). [CrossRef]
  2. L. Wang, S. L. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995). [CrossRef]
  3. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997). [CrossRef]
  4. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999). [CrossRef]
  5. G. Yao and L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000). [CrossRef]
  6. L. Wang and X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997). [CrossRef]
  7. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003). [CrossRef]
  8. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000). [CrossRef]
  9. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007). [CrossRef]
  10. F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Display Technol. 6, 455–464 (2010). [CrossRef]
  11. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005). [CrossRef]
  12. M. Atlan and M. Gross, “Spatiotemporal heterodyne detection,” J. Opt. Soc. Am. A 24, 2701–2709 (2007). [CrossRef]
  13. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004). [CrossRef]
  14. L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005). [CrossRef]
  15. F. Ramaz, B. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004). [CrossRef]
  16. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007). [CrossRef]
  17. X. Xu, H. Zhang, P. Hemmer, D. Qing, C. Kim, and L. V. Wang, “Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography,” Opt. Lett. 32, 656–658 (2007). [CrossRef]
  18. A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003). [CrossRef]
  19. A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. J. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005). [CrossRef]
  20. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005). [CrossRef]
  21. S. Farahi, G. Montemezzani, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010). [CrossRef]
  22. G. Rousseau, A. Blouin, and J. P. Monchalin, “Ultrasound-modulated optical imaging using a powerful long pulse laser,” Opt. Express 16, 12577–12590 (2008). [CrossRef]
  23. M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009). [CrossRef]
  24. M. Lesaffre, S. Farahi, A. C. Boccara, F. Ramaz, and M. Gross, “Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light,” J. Opt. Soc. Am. A 28, 1436–1444 (2011). [CrossRef]
  25. T. Y. Chang, A. E. Chiou, and P. Yeh, “Cross-polarization photorefractive two-beam coupling in gallium arsenide,” J. Opt. Soc. Am. B 5, 1724–1729 (1988). [CrossRef]
  26. M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005). [CrossRef]
  27. E. B. la Guillaume, S. Farahi, E. Bossy, M. Gross, and F. Ramaz, “Acousto-optical coherence tomography with a digital holographic detection scheme,” Opt. Lett. 37, 3216–3218 (2012). [CrossRef]
  28. S. Farahi, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Time resolved three-dimensional acousto-optic imaging of thick scattering media,” Opt. Lett. 37, 2754–2756 (2012). [CrossRef]
  29. “Medical electrical equipment: particular requirements for the safety of ultrasound diagnostic and monitoring equipment,” IEC 60601, part 2–37.
  30. “Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers,” Division of Reproductive, Abdominal, Ear, Nose, Throat and Radiological Devices, Food and Drug Administration, 1997.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited