OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Optical trapping Rayleigh dielectric spheres with focused anomalous hollow beams

Zhirong Liu and Daomu Zhao  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1310-1316 (2013)
http://dx.doi.org/10.1364/AO.52.001310


View Full Text Article

Enhanced HTML    Acrobat PDF (825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focusing properties of anomalous hollow beams (AHBs) are theoretically and numerically investigated. The radiation forces acting upon a Rayleigh dielectric sphere produced by focused AHBs are also studied. Results show that focused AHBs can be used to trap and manipulate microsized dielectric spheres with high-refractive index at the focal point. Finally, the stability conditions for effective trapping particles are analyzed in detail. The results presented here are of interest in some possible applications by making use of AHBs.

© 2013 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.5870) Scattering : Scattering, Rayleigh
(350.5500) Other areas of optics : Propagation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 8, 2012
Revised Manuscript: January 5, 2013
Manuscript Accepted: January 22, 2013
Published: February 18, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Zhirong Liu and Daomu Zhao, "Optical trapping Rayleigh dielectric spheres with focused anomalous hollow beams," Appl. Opt. 52, 1310-1316 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-6-1310


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  2. Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997). [CrossRef]
  3. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996). [CrossRef]
  4. F. E. S. Vetelino and L. C. Andrews, “Annular Gaussian beams in turbulent media,” Proc. SPIE 5160, 86–97 (2004). [CrossRef]
  5. X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767–768 (1993). [CrossRef]
  6. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  7. H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927(1994). [CrossRef]
  8. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996). [CrossRef]
  9. S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994). [CrossRef]
  10. C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13, 085102 (2011). [CrossRef]
  11. Z. Xu, D. H. Zhang, C. Yan, D. Li, and Y. Wang, “Concentric cylindrical metamaterials for subwavelength dark hollow light cones,” J. Opt. 14, 114014 (2012). [CrossRef]
  12. V. I. Balykin and V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the A-region,” Opt. Commun. 64, 151–156 (1987). [CrossRef]
  13. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  14. Y. J. Cai, X. H. Lu, and Q. Lin, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28, 1084–1086 (2003). [CrossRef]
  15. Z. R. Mei and D. M. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A 22, 1898–1902 (2005). [CrossRef]
  16. Y. K. Wu, J. Li, and J. Wu, “Anomalous hollow electron beams in a storage ring,” Phys. Rev. Lett. 94, 134802 (2005). [CrossRef]
  17. Y. J. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32, 3179–3181 (2007). [CrossRef]
  18. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  19. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  20. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986). [CrossRef]
  21. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999). [CrossRef]
  22. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  23. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  24. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef]
  25. A. J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994). [CrossRef]
  26. J. W. Dai and M. P. Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68, 988–996 (1995). [CrossRef]
  27. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998). [CrossRef]
  28. Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef]
  29. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008). [CrossRef]
  30. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  31. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  32. T. P. Meyrath, F. Schreck, J. L. Hanssen, C. S. Chuu, and M. G. Raizen, “A high frequency optical trap for atoms using Hermite–Gaussian beams,” Opt. Express 13, 2843–2851 (2005). [CrossRef]
  33. M. Bhattacharya and P. Meystre, “Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror,” Phys. Rev. Lett. 99, 153603 (2007). [CrossRef]
  34. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004). [CrossRef]
  35. H. Little, C. T. A. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12, 2560–2565 (2004). [CrossRef]
  36. A. A. Ambardekar and Y. Q. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30, 1797–1799 (2005). [CrossRef]
  37. J. L. Deng, Q. Wei, Y. Z. Wang, and Y. Q. Li, “Numerical modeling of optical levitation and trapping of the “stuck” particles with a pulsed optical tweezers,” Opt. Express 13, 3673–3680 (2005). [CrossRef]
  38. L. G. Wang and H. S. Chai, “Revisit on dynamic radiation forces induced by pulsed Gaussian beams,” Opt. Express 19, 14389–14402 (2011). [CrossRef]
  39. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007). [CrossRef]
  40. Y. J. Zhang, B. F. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010). [CrossRef]
  41. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36, 1491–1493 (2011). [CrossRef]
  42. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36, 3675–3677 (2011). [CrossRef]
  43. Z. Zhang, D. Cannan, J. Liu, P. Zhang, D. N. Christodoulides, and Z. Chen, “Observation of trapping and transporting air-borne absorbing particles with a single optical beam,” Opt. Express 20, 16212–16217 (2012). [CrossRef]
  44. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008). [CrossRef]
  45. Z. Zheng, B. F. Zhang, H. Chen, J. P. Ding, and H. T. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011). [CrossRef]
  46. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4057 (2010). [CrossRef]
  47. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011). [CrossRef]
  48. J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010). [CrossRef]
  49. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 2645–3649 (2012). [CrossRef]
  50. L. G. Wang, “Optical forces on submicron particles induced by full Poincaré beams,” Opt. Express 20, 20814–20826 (2012). [CrossRef]
  51. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007). [CrossRef]
  52. C. L. Zhao and Y. J. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011). [CrossRef]
  53. J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially coherent light,” J. Opt. Soc. Am. A 29, 1389–1398 (2012). [CrossRef]
  54. K. Visscher and G. J. Brakenhoff, “A theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,” Optik 89, 174–180 (1992).
  55. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited