OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Robust approach to directly measuring water-leaving radiance in the field

ZhongPing Lee, Nima Pahlevan, Yu-Hwan Ahn, Steven Greb, and David O’Donnell  »View Author Affiliations

Applied Optics, Vol. 52, Issue 8, pp. 1693-1701 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It has been a long-standing goal to precisely measure water-leaving radiance (Lw, or its equivalent property, remote-sensing reflectance) in the field, but reaching this goal is quite a challenge. This is because conventional approaches do not provide a direct measurement of Lw, but rather measure various related components and subsequently derive this core property from these components. Due to many uncontrollable factors in the measurement procedure and imprecise post-measurement processing routines, the resulting Lw is inherently associated with various levels of uncertainties. Here we present a methodology called the skylight-blocked approach (SBA) to measure Lw directly in the field, along with results obtained recently in the Laurentian Great Lakes. These results indicate that SBA can measure Lw in high precision. In particular, there is no limitation of water types for the deployment of SBA, and the requirement of post-measurement processing is minimum; thus high-quality Lw for a wide range of aquatic environments can be acquired.

© 2013 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: December 5, 2012
Revised Manuscript: February 3, 2013
Manuscript Accepted: February 6, 2013
Published: March 7, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics
March 22, 2013 Spotlight on Optics

ZhongPing Lee, Nima Pahlevan, Yu-Hwan Ahn, Steven Greb, and David O’Donnell, "Robust approach to directly measuring water-leaving radiance in the field," Appl. Opt. 52, 1693-1701 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No. 3, S. Sathyendranath, ed. (IOCCG, 2000).
  2. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z.-P. Lee, ed. (IOCCG, 2006), p. 126.
  3. H. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265–278 (1998). [CrossRef]
  4. D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” NASA Tech. Memo. 2004-211621 (NASA, 2003).
  5. K. J. Voss, S. McLean, M. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. Trees, M. Twardowski, and D. Clark, “An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry,” J. Atmos. Ocean. Technol. 27, 1747–1759 (2010). [CrossRef]
  6. P. J. Werdell, S. W. Bailey, B. A. Franz, A. Morel, and C. R. McClain, “On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model,” Appl. Opt. 46, 5649–5666 (2007). [CrossRef]
  7. G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009). [CrossRef]
  8. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, G. Mitchell, and R. Barnes, “Calibration and validation plan for SeaWiFS,” NASA Tech. Memo. 104566, Vol. 3, S. B. Hooker and E. R. Firestone, eds. (NASA, 1992), p. 41.
  9. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978). [CrossRef]
  10. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef]
  11. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46, 1535–1547 (2007). [CrossRef]
  12. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000). [CrossRef]
  13. D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39, 456–469 (2000). [CrossRef]
  14. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurement and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3, NASA/TM-2002-210004, J. L. Mueller and G. S. Fargion, eds. (NASA, 2002), pp. 171–182.
  15. J. L. Mueller, G. S. Fargion, and C. R. McClain, Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4 (NASA, 2003).
  16. S. B. Hooker, and S. Maritorena, “An evaluation of oceanographic radiometers and deployment methodologies,” J. Atmos. Ocean. Technol. 17, 811–830 (2000). [CrossRef]
  17. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999). [CrossRef]
  18. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004). [CrossRef]
  19. Z.-P. Lee, Y.-H. Ahn, C. Mobley, and R. Arnone, “Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform,” Opt. Express 18, 26313–26342 (2010). [CrossRef]
  20. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. Pure Appl. Opt. 6, 690–697 (2004). [CrossRef]
  21. R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic bio-optical profiling system,” Appl. Opt. 23, 2791–2797 (1984). [CrossRef]
  22. G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004). [CrossRef]
  23. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  24. Y.-H. Ahn, “Development of redtide & water turbidity algorithms using ocean color satellite,” 1999, KORDI Seoul, Korea, p. 287.
  25. H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanog 37, 491–500 (1992). [CrossRef]
  26. R. A. Leathers, T. V. Downes, and C. D. Mobley, “Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments,” Opt. Express 8, 561–570 (2001). [CrossRef]
  27. R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis, S. W. Duntley, ed. (Scripps Institution of Oceanography, 1974). pp. 1–20.
  28. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef]
  29. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D’Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808–819 (2002). [CrossRef]
  30. S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486–515 (2002). [CrossRef]
  31. K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanog. 30, 286–298 (1985). [CrossRef]
  32. D. Doxaran, N. C. Cherukuru, S. J. Lavender, and G. F. Moore, “Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations,” Appl. Opt. 43, 5981–5986 (2004). [CrossRef]
  33. S. Hooker and W. E. Esaias, “An overview of the SeaWiFS project,” Eos 74, 241–246 (1993).
  34. J. R. V. Zaneveld, E. Boss, and P. A. Hwang, “The influence of coherent waves on the remotely sensed reflectance,” Opt. Express 9, 260–266 (2001). [CrossRef]
  35. G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009). [CrossRef]
  36. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996). [CrossRef]
  37. H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17, 16192–16208 (2009). [CrossRef]
  38. A. Morel and B. Gentili, “Radiation transport within oceanic (case 1) water,” J. Geophys. Res. 109, C06008 (2004). [CrossRef]
  39. B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean properties,” Appl. Opt. 29, 71–84 (1990). [CrossRef]
  40. K. J. Voss, and A. L. Chapin, “Upwelling radiance distribution camera system, NURADS,” Opt. Express 13, 4250–4262 (2005). [CrossRef]
  41. K. J. Voss, and N. Souaidia, “POLRADS: polarization radiance distribution measurement system,” Opt. Express 18, 19672–19680 (2010). [CrossRef]
  42. J. R. V. Zaneveld, E. Boss, and A. Barnard, “Influence of surface waves on measured and modeled irradiance profiles,” Appl. Opt. 40, 1442–1449 (2001). [CrossRef]
  43. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): bi-directional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef]
  44. J. P. Doyle, and G. Zibordi, “Optical propagation within a three-dimensional shadowed atmosphere-ocean field: application to large deployment structures,” Appl. Opt. 41, 4283–4306 (2002). [CrossRef]
  45. G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos 87, 297 (2006).
  46. M. R. Abbott and R. M. Letelier, “Decorrelation scales of chlorophyll as observed from bio-optical drifters in the California Current,” Deep-Sea Res. 45, 1639–1667 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited