OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Remote identification of the invasive tunicate Didemnum vexillum using reflectance spectroscopy

Thomas Leeuw, Seth O. Newburg, Emmanuel S. Boss, Wayne H. Slade, Michael G. Soroka, Judith Pederson, Chryssostomos Chryssostomidis, and Franz S. Hover  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1758-1763 (2013)
http://dx.doi.org/10.1364/AO.52.001758


View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Benthic coverage of the invasive tunicate Didemnum vexillum on Georges Bank is largely unknown. Monitoring of D. vexillum coverage is vital to understanding the impact this invasive species will have on the productive fishing grounds of Georges Bank. Here we investigate using reflectance spectroscopy as a method for remote identification of D. vexillum. Using two different systems, a NightSea Dive-Spec and a combination of LED light sources with a hyperspectral radiometer, we collected in-situ measurements of reflectance from D. vexillum colonies. In comparison to reflectance spectra of other common benthic substrates, D. vexillum appears to have a unique spectral signature between 500 and 600 nm. Measuring the slope of the spectrum between these wavelengths appears to be the most robust method for spectral identification. Using derivative analysis or principal component analysis, the reflectance spectra of D. vexillum can be identified among numerous other spectra of common benthic substrates. An optical system consisting of a radiometer, light source, and camera was deployed on a remotely operated vehicle to test the feasibility of using reflectance to assess D. vexillum coverage. Preliminary results, analyzed here, prove the method to be successful for the areas we surveyed and open the way for its use on large-scale surveys.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(240.6645) Optics at surfaces : Surface differential reflectance

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 29, 2012
Manuscript Accepted: February 10, 2013
Published: March 8, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Thomas Leeuw, Seth O. Newburg, Emmanuel S. Boss, Wayne H. Slade, Michael G. Soroka, Judith Pederson, Chryssostomos Chryssostomidis, and Franz S. Hover, "Remote identification of the invasive tunicate Didemnum vexillum using reflectance spectroscopy," Appl. Opt. 52, 1758-1763 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-52-8-1758


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Bullard, G. Lambert, M. R. Carman, J. Byrnes, R. B. Whitlatch, G. Ruiz, R. J. Miller, L. Harris, P. C. Valentine, J. S. Collie, J. Pederson, D. C. McNaught, A. N. Cohen, R. G. Asch, J. Dijkstra, and K. Heinonen, “The colonial ascidian Didemnum sp. A: current distribution, basic biology, and potential threat to marine communities of the northeast and west coasts of North America,” J. Exp. Mar. Biol. Ecol. 342, 99–108 (2007). [CrossRef]
  2. P. Kott, “A new species of Didemnum (Ascidiacea, Tunicata) from the Atlantic coast of North America,” Zootaxa 732, 1–10 (2004).
  3. A. Price, J. S. Collie, and D. Smith, “18s ribosomal RNA and cytochrome oxidase gene sequences of Didemnum sp., an invasive colonial tunicate,” GSO Technical Report No. 2006-01, Summer Undergraduate Research Fellowship Program in Oceanography (University of Rhode Island, Graduate School of Oceanography, 2005), Narragansett, RI, pp. 46–53.
  4. N. L. Lengyel, J. S. Collie, and P. C. Valentine, “The invasive colonial ascidian Didemnum vexillum on Georges Bank ecological effects and genetic identification,” Aquat. Invas. 4, 143–152 (2009). [CrossRef]
  5. P. Kott, “A complex didemnid ascidian from Whangamata, New Zealand,” J. Mar. Biol. Assoc. UK 82, 625–628 (2002). [CrossRef]
  6. J. Dijkstra, L. G. Harris, and E. Westerman, “Distribution and long-term temporal patterns of four invasive colonial ascidians in the Gulf of Maine,” J. Exp. Mar. Biol. Ecol. 342, 61–68 (2007). [CrossRef]
  7. P. C. Valentine, J. S. Collie, R. N. Reid, R. G. Asch, V. G. Guida, and D. S. Blackwood, “The occurrence of the colonial ascidian Didemnum sp. on Georges Bank gravel habitat: ecological observations and potential effects on groundfish and scallop fisheries,” J. Exp. Mar. Biol. Ecol. 342, 179–181 (2007). [CrossRef]
  8. J. C. Price, “How unique are spectral signatures?” Remote Sens. Environ. 49, 181–186 (1994). [CrossRef]
  9. J. R. V. Zaneveld and E. Boss, “The influence of bottom morphology on reflectance: theory and two-dimensional geometry model,” Limnol. Oceanog. 48, 374–379 (2003). [CrossRef]
  10. R. N. Clark, G. A. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B. Dalton, R. R. McDougal, and C. A. Gent, “Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems,” J. Geophys. Res. 108, 5131 (2003). [CrossRef]
  11. B. L. Ehlmann, J. F. Mustard, S. L. Murchie, F. Poulet, J. L. Bishop, A. J. Brown, W. M. Calvin, R. N. Clark, D. J. Des Marais, R. E. Milliken, L. H. Roach, T. L. Roush, G. A. Swayze, and J. J. Wray, “Orbital identification of carbonate-bearing rocks on Mars,” Science 322, 1828–1832 (2008). [CrossRef]
  12. P. J. Werdell and C. S. Roesler, “Remote assessment of benthic substrate composition in shallow waters using multispectral reflectance,” Limnol. Oceanog. 48, 557–567 (2003). [CrossRef]
  13. E. M. Louchard, R. P. Reid, and F. C. Stephens, “Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: a comparative spectral classification approach,” Limnol. Oceanog. 48, 511–521 (2003). [CrossRef]
  14. H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanog. 48, 444–455 (2003). [CrossRef]
  15. P. K. Goel, S. O. Prasher, J. A. Landry, R. M. Patel, R. B. Bonnell, A. A. Viau, and J. R. Miller, “Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn,” Comput. Electron. Agric. 38, 99–124 (2003). [CrossRef]
  16. K. L. Smith, M. D. Steven, and J. J. Colls, “Use of hyperspectral derivative ratios in the red-edge region to identify plant stress response to gas leaks,” Remote Sens. Environ. 92, 207–217 (2004). [CrossRef]
  17. M. A. Moline, D. L. Woodruff, and N. R. Evans, “Optical delineation of benthic habitat using an autonomous underwater vehicle,” J. Field Robot. 24, 461–471 (2007). [CrossRef]
  18. D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19, 29–43 (2002). [CrossRef]
  19. F. Tsai and W. Philpot, “Derivative analysis of hyperspectral data,” Remote Sens. Environ. 66, 41–51 (1998). [CrossRef]
  20. C. H. Mazel, “In-situ measurement of reflectance and fluorescence spectra to support hyperspectral remote sensing and marine biology research,” Oceans 2006 Conference, 1–4.
  21. A. A. Bennet and J. J. Leonard, “A behavior-based approach to adaptive feature detection and following with autonomous underwater vehicles,” IEEE J. Oceanic Eng. 25, 213–226 (2000). [CrossRef]
  22. A. A. Da Silva, D. De Keukeleire, D. R. Cardoso, and D. W. Franco, “Multivariate analysis of UV-Vis absorption spectral data from cachaca wood extracts: a model to classify aged Brazilian cachacas according to the wood species used,” Anal. Methods 4, 642–646 (2012). [CrossRef]
  23. P. D. Hunter, A. N. Tyler, M. Presing, A. W. Kovacs, and T. Preston, “Spectral discrimination of phytoplankton color groups: the effect of suspended particulate matter and sensor spectral resolution,” Remote Sens. Environ. 112, 1527–1544 (2008). [CrossRef]
  24. K. Y. Noonan, L. A. Tonge, O. S. Fenton, D. B. Damiano, and K. A. Frederick, “Rapid classification of simulated street drug mixtures using raman spectroscopy and principal component analysis,” Appl. Spectrosc. 63, 742–747 (2009). [CrossRef]
  25. S. Desset, R. Damus, F. Hover, J. Morash, and V. Polidoro, “Closer to deep underwater science with Odyssey IV class hovering autonomous underwater vehicle (HAUV),” National Sea Grant Library, MIT-R-05-004 (2005).
  26. J. Eskesen, D. Owens, M. Soroka, J. Morash, F. S. Hover, and C. Chryssostomidis, “Design and performance of Odyssey IV: a deep ocean hover-capable AUV,” National Sea Grant Library, MIT- T-09-006 (2009).
  27. P. C. Valentine, M. R. Carman, D. S. Blackwood, and E. J. Heffron, “Ecological observations on the colonial ascidian Didemnum sp. in a New England tide pool habitat,” J. Exp. Mar. Biol. Ecol. 342, 109–121 (2007). [CrossRef]
  28. D. P. Pisut and J. R. Pawlik, “Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids?” J. Exp. Mar. Biol. Ecol. 270, 203–214 (2002). [CrossRef]
  29. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in-situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanog. 34, 1510–1523 (1989). [CrossRef]
  30. S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited