OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap

Mikhail Aleksandrovich Rykov and Roman Vasilevich Skidanov  »View Author Affiliations


Applied Optics, Vol. 53, Issue 2, pp. 156-164 (2014)
http://dx.doi.org/10.1364/AO.53.000156


View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article we study modified optical beams used as optical tweezers for guiding biological micro-objects. We mean to achieve more efficient micromanipulation by using crescent intensity distribution. During laboratory experiments to test their theoretical projections we manufactured a diffractive optical element (DOE) to generate the proposed intensity distribution. Experimental estimations are provided for DOE energy efficiency. We conduct both theoretical and experimental studies of the crescent beam trapping strength. It transpires that in some cases crescent-shaped beams are more efficient than more commonly used Gaussian beams.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 7, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: December 2, 2013
Published: January 3, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Mikhail Aleksandrovich Rykov and Roman Vasilevich Skidanov, "Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap," Appl. Opt. 53, 156-164 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-2-156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef]
  3. G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002). [CrossRef]
  4. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996). [CrossRef]
  5. S. Thanh and N. C. Zakharov, “Photogenerated singlet oxygen damages cells in optical traps,” arXiv:0911.4651 (2009).
  6. E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003). [CrossRef]
  7. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008). [CrossRef]
  8. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16, 20987–21003 (2008). [CrossRef]
  9. V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405 (2005). [CrossRef]
  10. H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Express 19, 13285–13290 (2011). [CrossRef]
  11. A. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” Optoelectron. Adv. Mater. 1, 158–161 (2007).
  12. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan, “Multi force optical tweezers to generate gradients of forces,” Opt. Express 12, 3906–3910 (2004). [CrossRef]
  13. R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, “Optical orientation and rotation of trapped red blood cells with Laguerre–Gaussian mode,” Opt. Express 19, 7680–7688 (2011). [CrossRef]
  14. V. R. Daria, M. A. Go, and H.-A. Bachor, “Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles,” J. Opt. 13, 044004 (2011). [CrossRef]
  15. Q. Sun, K. Zhou, G. Fang, G. Zhang, Z. Liu, and S. Liu, “Hollow sinh–Gaussian beams and their paraxial properties,” Opt. Express 20, 9682–9691 (2012). [CrossRef]
  16. C. C. Olson, R. T. Schermer, and F. Bucholtz, “Tailored optical force fields using evolutionary algorithms,” Opt. Express 19, 18543–18557 (2011). [CrossRef]
  17. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical ‘cogwheel’ tweezers,” Opt. Express 12, 4129–4135 (2004). [CrossRef]
  18. Y. Jiang, K. Huang, and X. Lu, “Radiation force of highly focused Lorentz–Gauss beams on a Rayleigh particle,” Opt. Express 19, 9708–9713 (2011). [CrossRef]
  19. O. Steuernagel, “Coherent transport and concentration of particles in optical traps using varying transverse beam profiles,” J. Opt. A 7, S392–S398 (2005). [CrossRef]
  20. V. G. Volostnikov, S. P. Kotova, N. N. Losevskii, and M. A. Rakhmatulin, “Microobject manipulation by laser beams with a nonzero orbital momentum,” Quantum Electron. 32, 565–566 (2002). [CrossRef]
  21. E. G. Abramochkin, S. P. Kotova, A. V. Korobtsov, N. N. Losevsky, A. M. Mayorova, M. A. Rakhmatulin, and V. G. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006). [CrossRef]
  22. E. G. Abramochkin, K. N. Afanasiev, V. G. Volostnikov, A. V. Korobtsov, S. P. Kotova, N. N. Losevsky, A. M. Mayorova, and E. V. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci., Phys 72, 68–70 (2008). [CrossRef]
  23. T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita, “SCMD: saccharomyces cerevisiae morphological database,” Nucleic Acids Res. 32, D319–D322 (2004). [CrossRef]
  24. R. V. Skidanov, “Computing the interaction force between a laser beam and arbitrary shape particles,” Comput. Opt. 28, 18–21 (2005).
  25. S. B. Kim, K. H. Lee, S. S. Kim, and H. J. Sung, “Optical force on a pair of concentric spheres in a focused laser beam: ray-optics regime,” J. Opt. Soc. Am. B 29, 2531–2541 (2012). [CrossRef]
  26. R. V. Skidanov and M. A. Rykov, “Modelling of movement of biological microobjects in light beams,” Comput. Opt. 34, 308–314 (2010).
  27. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011). [CrossRef]
  28. V. Kotlyar, P. Seraphimovich, and V. Soifer, “An iterative algorithm for designing diffractive optical elements with regularization,” Opt. Lasers Eng. 29, 261–268 (1998). [CrossRef]
  29. V. V. Kotlyar and A. S. Melehin, “Algorithm for calculation of a gradient optical element with design parameters,” Proc. SPIE 4242, 133–138 (2001). [CrossRef]
  30. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited