OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Approximate solution to vector radiative transfer in gradient-index medium

Xun Ben, Hong-Liang Yi, and He-Ping Tan  »View Author Affiliations


Applied Optics, Vol. 53, Issue 3, pp. 388-401 (2014)
http://dx.doi.org/10.1364/AO.53.000388


View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within a gradient-index medium, the radiative rays propagate in curved paths, which makes polarized states change continuously and the solution to the radiative transfer be thus more complex and difficult. In this paper, an arbitrary multilayer model is developed to approximately simulate vector (polarized) radiative transfer in a gradient-index plane-parallel medium. The gradient-index medium is divided into an arbitrary number of sublayers, and each sublayer has a uniform refractive index and two virtual Fresnel’s interfaces where only transmission (refraction) is considered. Thus the polarization caused by the curved propagation of lights is approximated by that resulting from refraction on the interfaces. Radiative transfer with consideration of polarization caused by particle scattering and refraction (reflection) on the interfaces (surfaces) in the multilayer model is solved by the MC method. The grid independence of results obtained by the multilayer model for vector radiative transfer in gradient-index medium shows that the convergent solution of Stokes vector will be achieved provided that the sublayer number is large enough. The results for apparent emissivity of gradient-index medium and Stokes vector for two-layer medium are compared well with those in published literatures. Finally, we investigate polarized behaviors of radiative transfer in Rayleigh scattering slabs with linear and sinusoidal gradient indexes and present angular distributions of Stokes vector. Results show that total reflection inside the gradient-index medium resulting from the curved paths traveled by the photons affects greatly the angular distribution characteristics of Stokes vector.

© 2014 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Scattering

History
Original Manuscript: September 4, 2013
Manuscript Accepted: December 7, 2013
Published: January 15, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Xun Ben, Hong-Liang Yi, and He-Ping Tan, "Approximate solution to vector radiative transfer in gradient-index medium," Appl. Opt. 53, 388-401 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-3-388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Asllanaj and S. Fumeron, “Modified finite volume method applied to radiative transfer in 2D complex geometries and graded index media,” J. Quant. Spectrosc. Radiat. Transfer 111, 274–279 (2010). [CrossRef]
  2. O. N. Stavroudis, The Optics of Rays, Wavefronts and Caustics (Academic, 1972).
  3. Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, 1990).
  4. Y. T. Qiao, Graded Index Optics (Science, 1991).
  5. P. B. Abdallah and V. L. Dez, “Thermal emission of a semi-transparent slab with variable spatial refractive index,” J. Quant. Spectrosc. Radiat. Transfer 67, 185–198 (2000). [CrossRef]
  6. P. B. Abdallah and V. L. Dez, “Temperature field inside an absorbing-emitting semi-transparent slab at radiative equilibrium with variable spatial refractive index,” J. Quant. Spectrosc. Radiat. Transfer 65, 595–608 (2000). [CrossRef]
  7. P. B. Abdallah and V. L. Dez, “Radiative flux field inside an absorbing-emitting semi-transparent slab with variable spatial refractive index at radiative conductive coupling,” J. Quant. Spectrosc. Radiat. Transfer 67, 125–137 (2000). [CrossRef]
  8. P. B. Abdallah and V. L. Dez, “Thermal emission of a two-dimensional rectangular cavity with spatial affine refractive index,” J. Quant. Spectrosc. Radiat. Transfer 66, 555–569 (2000). [CrossRef]
  9. Y. Huang, X. L. Xia, and H.-P. Tan, “Radiative intensity solution and thermal emission analysis of a semitransparent medium layer with sinusoidal refractive index,” J. Quant. Spectrosc. Radiat. Transfer 74, 217–233 (2002). [CrossRef]
  10. Y. Huang, X. L. Xia, and H. P. Tan, “Temperature field of radiative equilibrium in a semitransparent slab with a linear refractive index and gray walls,” J. Quant. Spectrosc. Radiat. Transfer 74, 249–261 (2002). [CrossRef]
  11. Y. Huang, K. Y. Zhu, and J. Wang, “Temperature field of radiative equilibrium in a two-dimensional graded index medium with gray boundaries,” J. Quant. Spectrosc. Radiat. Transfer 110, 1013–1026 (2009). [CrossRef]
  12. L. H. Liu, H. P. Tan, and Q. Z. Yu, “Temperature distributions in an absorbing-emitting-scattering semitransparent slab with variable spatial refractive index,” Int. J. Heat Mass Transfer 46, 2917–2920 (2003). [CrossRef]
  13. Y. Huang, X. G. Liang, and X. L. Xia, “Monte Carlo simulation of radiative transfer in scattering, emitting, absorbing slab with gradient index,” J. Quant. Spectrosc. Radiat. Transfer 92, 111–120 (2005). [CrossRef]
  14. D. Lemonnier and V. L. Dez, “Discrete ordinates solution of radiative transfer across a slab with variable refractive index,” J. Quant. Spectrosc. Radiat. Transfer 73, 195–204 (2002). [CrossRef]
  15. L. H. Liu, “Finite element solution of radiative transfer across a slab with variable spatial refractive index,” Int. J. Heat Mass Transfer 48, 2260–2265 (2005). [CrossRef]
  16. L. H. Liu, “Finite volume method for radiation heat transfer in graded index medium,” J. Thermophys. Heat Transfer 20, 59–66 (2006). [CrossRef]
  17. N. A. Krishna and S. C. Mishra, “Discrete transfer method applied to radiative transfer in a variable refractive index semitransparent medium,” J. Quant. Spectrosc. Radiat. Transfer 102, 432–440 (2006). [CrossRef]
  18. J. M. Zhao and L. H. Liu, “Solution of radiative heat transfer in graded index media by least square spectral element method,” Int. J. Heat Mass Transfer 50, 2634–2642 (2007). [CrossRef]
  19. G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519–1527 (1968). [CrossRef]
  20. R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that in include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 41, 117–145 (1989). [CrossRef]
  21. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transfer 46, 413–423 (1991). [CrossRef]
  22. C. E. Siewert, “A discrete-ordinates solution for radiative-transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 64, 227–254 (2000). [CrossRef]
  23. J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre’, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007). [CrossRef]
  24. F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a spherical-shell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 117, 59–70 (2013). [CrossRef]
  25. H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: Application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transfer 72, 467–483 (2002). [CrossRef]
  26. X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef]
  27. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530–6539 (2004). [CrossRef]
  28. R. Vaillona, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particle-laden semi-transparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transfer 84, 383–394 (2004). [CrossRef]
  29. C. Davis, C. Emde, and R. Harwood, “A 3-D Polarized reversed Monte Carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Remote Sens. 43, 1096–1101 (2005). [CrossRef]
  30. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005). [CrossRef]
  31. J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transfer 104, 277–287 (2007). [CrossRef]
  32. C. Cornet, L. C. Labonnote, and F. Szczap, “Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transfer 111, 174–186 (2010). [CrossRef]
  33. G. W. Kattawar, G. N. Plass, and J. A. Guinn, “Monte Carlo calculations of the polarization of radiation in the Earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3, 353–372 (1973). [CrossRef]
  34. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: Effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989). [CrossRef]
  35. P. W. Zhai, Y. X. Hu, C. R. Trepte, and P. L. Lucker, “A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method,” Opt. Express 17, 2057–2079 (2009). [CrossRef]
  36. P. W. Zhai, Y. X. Hu, J. Cdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transfer 111, 1025–1040 (2010). [CrossRef]
  37. P. W. Zhai, Y. X. Hu, D. B. Josset, C. R. Trepte, P. L. Lucker, and B. Lin, “Advanced angular interpolation in the vector radiative transfer for coupled atmosphere and ocean systems,” J. Quant. Spectrosc. Radiat. Transfer 115, 19–27 (2013). [CrossRef]
  38. X. Q. He, D. L. Pan, Y. Bai, Q. K. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China Ser. D 50, 442452 (2007). [CrossRef]
  39. X. Q. He, Y. Bai, Q. K. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transfer 111, 1426–1448 (2010). [CrossRef]
  40. Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010). [CrossRef]
  41. E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transfer 111, 616–633 (2010). [CrossRef]
  42. R. D. M. Garcia, “Fresnel boundary and interface conditions for polarized radiative transfer in a multilayer medium,” J. Quant. Spectrosc. Radiat. Transfer 113, 306–317 (2012). [CrossRef]
  43. R. D. M. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to Fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transfer 115, 28–45 (2013). [CrossRef]
  44. S. Chandrasekhar, Radiative Transfer (Oxford University, 1950).
  45. C. W. Lau and K. M. Watson, “Radiation transport along curved ray paths,” J. Math. Phys. 11, 3125–3137 (1970). [CrossRef]
  46. J. M. Zhao, J. Y. Tan, and L. H. Liu, “On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media,” J. Quant. Spectrosc. Radiat. Transfer 113, 239–250 (2012). [CrossRef]
  47. M. F. Modest, Radiative Heat Transfer, 2nd ed. (Academic, 2003).
  48. M. Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, 1992).
  49. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  50. M. I. Mishchenko, Scattering, Absorption, and Emission of Light by Small Particles (NASA, 2002).
  51. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001). [CrossRef]
  52. R. Green, Spherical Astronomy (Cambridge University, 1985).
  53. B. A. Whitney, “Monte Carlo radiative transfer,” Arxiv preprint arXiv: 1104.4990 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited