OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Approximate solution to vector radiative transfer in gradient-index medium

Xun Ben, Hong-Liang Yi, and He-Ping Tan  »View Author Affiliations


Applied Optics, Vol. 53, Issue 3, pp. 388-401 (2014)
http://dx.doi.org/10.1364/AO.53.000388


View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within a gradient-index medium, the radiative rays propagate in curved paths, which makes polarized states change continuously and the solution to the radiative transfer be thus more complex and difficult. In this paper, an arbitrary multilayer model is developed to approximately simulate vector (polarized) radiative transfer in a gradient-index plane-parallel medium. The gradient-index medium is divided into an arbitrary number of sublayers, and each sublayer has a uniform refractive index and two virtual Fresnel’s interfaces where only transmission (refraction) is considered. Thus the polarization caused by the curved propagation of lights is approximated by that resulting from refraction on the interfaces. Radiative transfer with consideration of polarization caused by particle scattering and refraction (reflection) on the interfaces (surfaces) in the multilayer model is solved by the MC method. The grid independence of results obtained by the multilayer model for vector radiative transfer in gradient-index medium shows that the convergent solution of Stokes vector will be achieved provided that the sublayer number is large enough. The results for apparent emissivity of gradient-index medium and Stokes vector for two-layer medium are compared well with those in published literatures. Finally, we investigate polarized behaviors of radiative transfer in Rayleigh scattering slabs with linear and sinusoidal gradient indexes and present angular distributions of Stokes vector. Results show that total reflection inside the gradient-index medium resulting from the curved paths traveled by the photons affects greatly the angular distribution characteristics of Stokes vector.

© 2014 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Scattering

History
Original Manuscript: September 4, 2013
Manuscript Accepted: December 7, 2013
Published: January 15, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Xun Ben, Hong-Liang Yi, and He-Ping Tan, "Approximate solution to vector radiative transfer in gradient-index medium," Appl. Opt. 53, 388-401 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-3-388

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited