OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Subsurface fluorescence molecular tomography with prior information

Wei He, Huangsheng Pu, Guanglei Zhang, Xu Cao, Bin Zhang, Fei Liu, Jianwen Luo, and Jing Bai  »View Author Affiliations

Applied Optics, Vol. 53, Issue 3, pp. 402-409 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Subsurface fluorescence molecular tomography (FMT) is an emerging technique determining fluorescence distribution by tomographic means in reflectance geometry. However, due to the highly diffusive nature of the photon propagation in biological tissues and the influence of nearer source–detector separations, stand-alone subsurface FMT could not accurately reflect the fluorophore distributions. To overcome this drawback, we propose a method to improve the performance of fluorescence imaging by coupling x-ray computed tomography (XCT) and subsurface FMT modalities. A Laplacian-type regularization matrix generated with tissue prior information obtained from XCT images is used to guide the reconstruction of fluorophore distribution. Reconstruction results of both simulation and phantom studies showed that significant improvements in localization and demarcation of fluorescent targets can be obtained with the proposed method compared to the reconstruction method without structural prior information.

© 2014 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 24, 2013
Manuscript Accepted: November 18, 2013
Published: January 16, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Wei He, Huangsheng Pu, Guanglei Zhang, Xu Cao, Bin Zhang, Fei Liu, Jianwen Luo, and Jing Bai, "Subsurface fluorescence molecular tomography with prior information," Appl. Opt. 53, 402-409 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Kepshire, S. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for subsurface imaging with protoporphyrin IX,” Opt. Express 16, 8581–8593 (2008). [CrossRef]
  2. S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16, 046005 (2011). [CrossRef]
  3. F. Liu, X. Cao, W. He, J. P. Song, Z. Q. Dai, B. Zhang, J. W. Luo, Y. H. Li, and J. Bai, “Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2012).
  4. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002). [CrossRef]
  5. V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002). [CrossRef]
  6. M. Franceschini and D. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” NeuroImage 21, 372–386 (2004). [CrossRef]
  7. L. Abou-Elkacem, S. Björn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice,” Eur. Radiol. 22, 1955–1962 (2012). [CrossRef]
  8. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007). [CrossRef]
  9. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  10. E. M. C. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1–2), 159–179 (2009). [CrossRef]
  11. X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883 (2010). [CrossRef]
  12. R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowskac, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging 29, 465–473 (2010). [CrossRef]
  13. A. Ale, V. Ermolayev, E. Herzog, C. Christian, M. H. Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–x-ray computed tomography,” Nat. Methods 9, 615–620 (2012). [CrossRef]
  14. B. Brooksby, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005). [CrossRef]
  15. G. L. Zhang, X. Cao, B. Zhang, F. Liu, J. W. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2012). [CrossRef]
  16. S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007). [CrossRef]
  17. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008). [CrossRef]
  18. E. D. Aydin, C. R. E. De Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002). [CrossRef]
  19. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef]
  20. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006). [CrossRef]
  21. D. F. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009). [CrossRef]
  22. X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011). [CrossRef]
  23. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. D. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007). [CrossRef]
  24. C. C. Paige and M. A. Saunders, “LSQR: an algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43–71 (1982). [CrossRef]
  25. J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30, 1143–1153 (2011). [CrossRef]
  26. F. Liu, X. Liu, B. Zhang, and J. Bai, “Extraction of target fluorescence signal from in vivo background signal with image subtraction algorithm,” Int. J. Autom. Comput. 9, 232–236 (2012). [CrossRef]
  27. D. S. Kepshire, S. Gibbs, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface fluorescence imaging of protoporphyrin IX with B-scan mode tomography,” Proc. SPIE 6139, 61391F (2006). [CrossRef]
  28. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007). [CrossRef]
  29. Y. T. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48, 1328–1336 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited