OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source

Ronald A. Barnes, Jr., Saher Maswadi, Randolph Glickman, and Mehdi Shadaram  »View Author Affiliations


Applied Optics, Vol. 53, Issue 3, pp. 511-519 (2014)
http://dx.doi.org/10.1364/AO.53.000511


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: October 9, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 11, 2013
Published: January 20, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Ronald A. Barnes, Saher Maswadi, Randolph Glickman, and Mehdi Shadaram, "Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source," Appl. Opt. 53, 511-519 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-3-511


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang, ed. Photoacoustic Imaging and Spectroscopy (Taylor & Francis, 2009).
  2. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  3. P. Burgholzer, J. Bauer-Marschallinger, H. Grun, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23, S65–S80 (2007). [CrossRef]
  4. Conjusteau, S. M. Maswadi, S. Ermilov, H. Brecht, N. Barsalou, R. D. Glickman, and A. Oraevsky, “Detection of gold-nanorod targeted pathogens using optical and piezoelectric optoacoustic sensors: comparative study,” Proc. SPIE 7177, 71771P (2009).
  5. B. E. Treeby and B. T. Cox, “A k-space Green’s function solution for acoustic initial value problems in homogeneous media with power law absorption,” J. Acoust. Soc. Am. 129, 3652–3660 (2011). [CrossRef]
  6. B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26, 115003 (2010). [CrossRef]
  7. B. E. Treeby and B. T. Cox, “Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian,” J. Acoust. Soc. Am. 127, 2741–2748 (2010). [CrossRef]
  8. B. E. Treeby and B. T. Cox, “K-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010). [CrossRef]
  9. B. T. Cox and B. E. Treeby, “Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media,” IEEE Trans. Med. Imaging 29, 387–396 (2010). [CrossRef]
  10. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453–3464 (2007). [CrossRef]
  11. B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616–3627 (2005). [CrossRef]
  12. G. Rizzatto, “Ultrasound transducers,” Eur. J. Radiol. 27, S188–S195 (1998). [CrossRef]
  13. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577–1583 (2005). [CrossRef]
  14. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors,” Inverse Probl. 23, S81–S94 (2007). [CrossRef]
  15. P. Burgholzer, G. Matt, M. Haltmeier, and G. Paltauf, “Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface,” Phys. Rev. E 75, 046706 (2007). [CrossRef]
  16. G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54, 3303–3314 (2009). [CrossRef]
  17. Y. Hristova, P. Kuchment, and L. V. Nguyen, “Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,” Inverse Probl. 24, 055006 (2008). [CrossRef]
  18. Y. Hristova, “Time reversal in thermoacoustic tomography—an error estimate,” Inverse Probl. 25, 055008 (2009). [CrossRef]
  19. S. M. Maswadi, R. D. Glickman, R. Elliott, and N. Barsalou, “Nano-LISA for in vitro diagnostic applications,” Proc. SPIE 7899, 78991O (2011). [CrossRef]
  20. S. M. Maswadi, L. Page, L. Woodward, R. D. Glickman, and N. Barsalou, “Optoacoustic sensing of ocular bacterial antigen using targeted gold nanorods,” Proc. SPIE 6856, 685615 (2008). [CrossRef]
  21. S. M. Maswadi, R. D. Glickman, N. Barsalou, and R. W. Elliott, “Investigation of photoacoustic spectroscopy for biomolecular detection,” Proc. SPIE 6138, 61380V (2006). [CrossRef]
  22. L. Page, S. M. Maswadi, and R. D. Glickman, “Optoacoustic multispectral imaging of radiolucent foreign bodies in tissue,” Appl. Spectrosc. 67, 22–28 (2013). [CrossRef]
  23. M. Waxler and C. E. Weir, “Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water,” J. Res. Natl. Bur. Stand. A Phys. Chem. 67A, 163–171 (1963). [CrossRef]
  24. S. Glassner, An Introduction to Ray Tracing (Morgan Kaufmann, 1989).
  25. K. Schröder and D. Önengüt, “Optical absorption of copper and copper-rich copper nickel alloys at room temperature,” Phys. Rev. 162, 628–631 (1967). [CrossRef]
  26. B. E. Treeby, “Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering,” J. Biomed. Opt. 18, 036008 (2013). [CrossRef]
  27. S. Lawton, “Temperature measurements in sooting flames by optoacoustic laser-beam deflection,” Appl. Opt. 25, 1262–1265 (1986). [CrossRef]
  28. G. T. Purves, G. Jundt, C. S. Adams, and I. G. Hughes, “Refractive index measurements by probe-beam deflection,” Eur. Phys. J. D 29, 433–436 (2004). [CrossRef]
  29. American National Standard for the Safe Use of Lasers (Laser Institute of America, Orlando, Florida, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited