OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography

Wu Yingchun, Wu Xuecheng, Yang Jing, Wang Zhihua, Gao Xiang, Zhou Binwu, Chen Linghong, Qiu Kunzan, Gérard Gréhan, and Cen Kefa  »View Author Affiliations

Applied Optics, Vol. 53, Issue 4, pp. 556-564 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Depth-of-field extension and accurate 3D position location are two important issues in digital holography for particle characterization and motion tracking. We propose a method of locating the axial positions of both opaque and transparent objects in the reconstructed 3D field in the wavelet domain. The spatial–frequency property of the reconstructed image is analyzed from the viewpoint of the point spread function of the digital inline holography. The reconstructed image is decomposed into high- and low-frequency subimages. By using the variance of the image gradient in the subimages as focus metrics, the depth-of-field of the synthesis image can be extended with all the particles focalized, and the focal plane of the object can be accurately determined. The method is validated by both simulated and experimental holograms of transparent spherical water droplets and opaque nonspherical coal particles. The extended-focus image is applied to the particle pairing in a digital holographic particle tracking velocimetry to obtain the 3D vector field.

© 2014 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2880) Holography : Holographic interferometry
(100.6890) Image processing : Three-dimensional image processing
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: August 2, 2013
Revised Manuscript: October 19, 2013
Manuscript Accepted: November 27, 2013
Published: January 24, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Wu Yingchun, Wu Xuecheng, Yang Jing, Wang Zhihua, Gao Xiang, Zhou Binwu, Chen Linghong, Qiu Kunzan, Gérard Gréhan, and Cen Kefa, "Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography," Appl. Opt. 53, 556-564 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Tyler and B. Thompson, “Fraunhofer holography applied to particle size analysis a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
  2. M. Adams, T. M. Kreis, and W. P. O. Jueptner, “Particle size and position measurement with digital holography,” Proc. SPIE 3098, 234–240 (1997). [CrossRef]
  3. J. K. Abrantes, M. Stanislas, S. Coudert, and L. F. A. Azevedo, “Digital microscopic holography for micrometer particles in air,” Appl. Opt. 52, A397–A409 (2013). [CrossRef]
  4. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010). [CrossRef]
  5. L. Tian, N. Loomis, J. A. Domnguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air–water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010). [CrossRef]
  6. J. Weng, J. Zhong, and C. Hu, “Phase reconstruction of digital holography with the peak of the two-dimensional Gabor wavelet transform,” Appl. Opt. 48, 3308–3316 (2009). [CrossRef]
  7. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002). [CrossRef]
  8. G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng. 43, 1039–1055 (2005). [CrossRef]
  9. J. Sheng, E. Malkeil, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008). [CrossRef]
  10. L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holographic imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47, 4501–4508 (2008). [CrossRef]
  11. S.-i. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Transfer 130, 042413 (2008). [CrossRef]
  12. S. Kim and S. J. Lee, “Measurement of dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255–264 (2009). [CrossRef]
  13. Y. Yang, G. Y. Li, L. L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51, 255–267 (2012). [CrossRef]
  14. D. Allano, M. Malek, F. Walle, F. Corbin, G. Godard, S. Coëtmellec, B. Lecordier, J.-M. Foucaut, and D. Lebrun, “Three-dimensional velocity near-wall measurements by digital in-line holography: calibration and results,” Appl. Opt. 52, A9–A17 (2013). [CrossRef]
  15. G. Indebetouw, W. Zhong, and D. Chamberlin-Long, “Point-spread function synthesis in scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 1708–1717 (2006). [CrossRef]
  16. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008). [CrossRef]
  17. M. Malek, S. Coetmellec, D. Allano, and D. Lebrun, “Formulation of in-line holography process by a linear shift invariant system: application to the measurement of fiber diameter,” Opt. Commun. 223, 263–271 (2003). [CrossRef]
  18. S. Coëtmellec, N. Verrier, M. Brunel, and D. Lebrun, “General formulation of digital in-line holography from correlation with a chirplet function,” J. Eur. Opt. Soc. 5, 10027 (2010). [CrossRef]
  19. T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41, 1829–1839 (2002). [CrossRef]
  20. A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kuehn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007). [CrossRef]
  21. D. Lebrun, A. M. Benkouider, and S. Cotmellec, “Particle field digital holographic reconstruction in arbitrary tilted planes,” Opt. Express 11, 224–229 (2003). [CrossRef]
  22. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt. Express 13, 9935–9940 (2005). [CrossRef]
  23. S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47, 3064–3071 (2008). [CrossRef]
  24. M. Paturzo and P. Ferraro, “Creating an extended focus image of a tilted object in Fourier digital holography,” Opt. Express 17, 20546–20552 (2009). [CrossRef]
  25. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett. 33, 1626–1628 (2008). [CrossRef]
  26. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt. 47, D71–D79 (2008).
  27. W. Chen, C. Quan, and C. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95, 201103 (2009).
  28. I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Extended depth-of-field and 3D information extraction in digital holographic microscopy,” in Advances in Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB5.
  29. I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009). [CrossRef]
  30. C. Buraga-Lefebvre, S. Coetmellec, D. Lebrun, and C. Ozkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000). [CrossRef]
  31. J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19–25 (1989).
  32. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008). [CrossRef]
  33. Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011). [CrossRef]
  34. Y. Yang, B. Kang, and Y. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008). [CrossRef]
  35. Y. Yang and B.-s. Kang, “Experimental validation for the determination of particle positions by the correlation coefficient method in digital particle holography,” Appl. Opt. 47, 5953–5960 (2008). [CrossRef]
  36. C. Deng, J. Huang, G. Li, and Y. Yang, “Application of constrained least squares filtering technique to focal plane detection in digital holography,” Opt. Commun. 291, 52–60 (2013). [CrossRef]
  37. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424–2430 (2004). [CrossRef]
  38. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007). [CrossRef]
  39. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef]
  40. Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359 (2012). [CrossRef]
  41. Y. Rivenson, A. Stern, and B. Javidi, “Improved depth resolution by single-exposure in-line compressive holography,” Appl. Opt. 52, A223–A231 (2013). [CrossRef]
  42. S. Soontaranon, J. Widjaja, and T. Asakura, “Extraction of object position from in-line holograms by using single wavelet coefficient,” Opt. Commun. 281, 1461–1467 (2008). [CrossRef]
  43. D. Moreno-Hernandez, J. Andrés Bueno-García, J. Ascención Guerrero-Viramontes, and F. Mendoza-Santoyo, “3D particle positioning by using the Fraunhofer criterion,” Opt. Lasers Eng. 49, 729–735 (2011). [CrossRef]
  44. J. Widjaja and P. Chuamchaitrakool, “Holographic particle tracking using Wigner–Ville distribution,” Opt. Lasers Eng. 51, 311–316 (2013). [CrossRef]
  45. G. Pajares and J. Manuel de la Cruz, “A wavelet-based image fusion tutorial,” Pattern Recogn. 37, 1855–1872 (2004).
  46. J. T. Huang, C. H. Shen, S. M. Phoong, and H. Chen, “Robust measure of image focus in the wavelet domain,” in Intelligent Signal Processing and Communication Systems (ISPACS) (IEEE, 2005), pp. 157–160.
  47. J. Kautsky, J. Flusser, B. Zitov, and S. Simberov, “A new wavelet-based measure of image focus,” Pattern Recogn. Lett. 23, 1785–1794 (2002).
  48. X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, S. Coetmellec, K. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012). [CrossRef]
  49. Y. Wu, X. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, L. Chen, K. Qiu, X. Gao, G. Grhan, and K. Cen, “Digital Gabor and off-axis particle holography by shaped beams: a numerical investigation with GLMT,” Opt. Commun. 305, 247–254 (2013). [CrossRef]
  50. S. Baek and S. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23–32 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited