OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions

Chih-Hua Chang, Cheng-Chien Liu, Hsiao-Wei Chung, Long-Jeng Lee, and Wen-Chang Yang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 4, pp. 605-617 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents a novel approach that integrates a shallow water semi-analytical (SSA) model and a genetic algorithm (GA) to retrieve water column inherent optical properties (IOPs) and identify bottom types simultaneously from measurement of subsurface remote sensing reflectance. This GA–SSA approach is designed based on the assumption that each pixel is homogeneous with regard to the bottom type when viewed at small (centimeter) scales, and it is validated against a synthetic data set (N=11,250) that consists of five types of bottom, three levels of bottom depth, 15 concentrations of chlorophyll-a (Chl-a), and a wide range of modeled IOP variations in clear and optically complex waters representing the coral reef environment. The results indicate that the GA–SSA approach is accurate and robust in the retrieval of IOPs and its success rate in identifying the real bottom type is limited by the level of Chl-a and bottom depth. When a pixel is homogeneous at a small scale, the maximum allowable concentrations for GA–SSA to perfectly identify all the five bottom types are 0.7mg/m3 at 5 m bottom depth, 0.2mg/m3 at 10 m, and 0.07mg/m3 at 15 m. A promising 80% recognition rate of the benthic community is possible with GA–SSA when an underwater hyperspectral imager is deployed to examine the health status of coral reefs in a clean (Chl-a<1mg/m3) and shallow (bottom depth<10m) environment. Further study that collects field data for direct validation is required to ensure that the GA–SSA approach is also applicable in real coral reef regions.

© 2014 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(030.5620) Coherence and statistical optics : Radiative transfer
(100.3190) Image processing : Inverse problems

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 26, 2013
Revised Manuscript: December 17, 2013
Manuscript Accepted: December 19, 2013
Published: January 24, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Chih-Hua Chang, Cheng-Chien Liu, Hsiao-Wei Chung, Long-Jeng Lee, and Wen-Chang Yang, "Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions," Appl. Opt. 53, 605-617 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Birkeland, Life and Death of Coral Reefs (Springer, 1997).
  2. P. L. Munday, J. M. Leis, J. M. Lough, C. B. Paris, M. J. Kingsford, M. L. Berumen, and J. Lambrechts, “Climate change and coral reef connectivity,” Coral Reef 28, 379–395 (2009). [CrossRef]
  3. T. P. Hughes, A. H. Baird, D. R. Bellwood, M. Card, S. R. Connolly, C. Folke, R. Grosberg, O. Hoegh-Guldberg, J. B. C. Jackson, J. Kleypas, J. M. Lough, P. Marshall, M. Nystrom, S. R. Palumbi, J. M. Pandolfi, B. Rosen, and J. Roughgarden, “Climate change, human impacts, and the resilience of coral reefs,” Science 301, 929–933 (2003). [CrossRef]
  4. J. M. Pandolfi, R. H. Bradbury, E. Sala, T. P. Hughes, K. A. Bjorndal, R. G. Cooke, D. McArdle, L. McClenachan, M. J. H. Newman, G. Paredes, R. R. Warner, and J. B. C. Jackson, “Global trajectories of the long-term decline of coral reef ecosystems,” Science 301, 955–958 (2003). [CrossRef]
  5. N. Knowlton, “The future of coral reefs,” Proc. Natl. Acad. Sci. USA 98, 5419–5425 (2001).
  6. T. R. McClanahan, “The near future of coral reefs,” Environ. Conserv. 29, 460–483 (2002).
  7. M. P. Lesser and C. D. Mobley, “Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery,” Coral Reef 26, 819–829 (2007). [CrossRef]
  8. P. J. Mumby, W. Skirving, A. E. Strong, J. T. Hardy, E. F. LeDrew, E. J. Hochberg, R. P. Stumpf, and L. T. David, “Remote sensing of coral reefs and their physical environment,” Mar. Pollut. Bull. 48, 219–228 (2004).
  9. H. Holden and E. LedrewLeDrew, “Hyperspectral identification of coral reef features,” Int. J. Remote Sens. 20, 2545–2563 (1999). [CrossRef]
  10. H. Holden and E. LeDrew, “Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal components analysis, and derivative spectroscopy,” Remote Sens. Environ. 65, 217–224 (1998). [CrossRef]
  11. J. D. Hedley, P. J. Mumby, K. E. Joyce, and S. R. Phinn, “Spectral unmixing of coral reef benthos under ideal conditions,” Coral Reef 23, 60–73 (2004). [CrossRef]
  12. E. J. Hochberg and M. J. Atkinson, “Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra,” Remote Sens. Environ. 85, 174–189 (2003). [CrossRef]
  13. E. J. Hochberg and M. J. Atkinson, “Spectral discrimination of coral reef benthic communities,” Coral Reef 19, 164–171 (2000). [CrossRef]
  14. E. Karpouzli, T. J. Malthus, and C. J. Place, “Hyperspectral discrimination of coral reef benthic communities in the western Caribbean,” Coral Reef 23, 141–151 (2004). [CrossRef]
  15. E. J. Hochberg, M. J. Atkinson, and S. Andrefouet, “Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing,” Remote Sens. Environ. 85, 159–173 (2003). [CrossRef]
  16. S. Andrefouet, F. E. Muller-Karger, E. J. Hochberg, C. M. Hu, and K. L. Carder, “Change detection in shallow coral reef environments using Landsat 7 ETM+ data,” Remote Sens. Environ. 78, 150–162 (2001). [CrossRef]
  17. D. Lubin, W. Li, P. Dustan, C. H. Mazel, and K. Stamnes, “Spectral signatures of coral reefs: features from space,” Remote Sens. Environ. 75, 127–137 (2001). [CrossRef]
  18. J. D. Hedley, C. M. Roelfsema, S. R. Phinn, and P. J. Mumby, “Environmental and sensor limitations in optical remote sensing of coral reefs: implications for monitoring and sensor design,” Remote Sens. 4, 271–302 (2012). [CrossRef]
  19. H. Holden and E. LeDrew, “Measuring and modeling water column effects on hyperspectral reflectance in a coral reef environment,” Remote Sens. Environ. 81, 300–308 (2002). [CrossRef]
  20. T. Kutser, A. G. Dekker, and W. Skirving, “Modeling spectral discrimination of Great Barrier Reef benthic communities by remote sensing instruments,” Limnol. Oceanogr. 48, 497–510 (2003). [CrossRef]
  21. E. J. Botha, V. E. Brando, J. M. Anstee, A. G. Dekker, and S. Sagar, “Increased spectral resolution enhances coral detection under varying water conditions,” Remote Sens. Environ. 131, 247–261 (2013). [CrossRef]
  22. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” Proc. SPIE 2963, 160–166 (1997). [CrossRef]
  23. D. R. Mishra, S. Narumalani, D. Rundquist, M. Lawson, and R. Perk, “Enhancing the detection and classification of coral reef and associated benthic habitats: a hyperspectral remote sensing approach,” J. Geophys. Res.-Oceans 112, C08014 (2007).
  24. H. Yamano, M. Tamura, Y. Kunii, and M. Hidaka, “Hyperspectral remote sensing and radiative transfer simulation as a tool for monitoring coral reef health,” Mar. Technol. Soc. J. 36, 4–13 (2002).
  25. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998). [CrossRef]
  26. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  27. A. G. Dekker, S. R. Phinn, J. Anstee, P. Bissett, V. E. Brando, B. Casey, P. Fearns, J. Hedley, W. Klonowski, Z. P. Lee, M. Lynch, M. Lyons, C. Mobley, and C. Roelfsema, “Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments,” Limnol. Oceanogr. 9, 396–425 (2011).
  28. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999). [CrossRef]
  29. S. M. Adler-Golden, P. K. Acharya, A. Berk, M. W. Matthew, and D. Gorodetzky, “Remote bathymetry of the littoral zone from AVIRIS, LASH, and QuickBird imagery,” IEEE Trans. Geosci. Remote Sens. 43, 337–347 (2005). [CrossRef]
  30. W. M. Klonowski, P. R. C. S. Fearns, and M. J. Lynch, “Retrieving key benthic cover types and bathymetry from hyperspectral imagery,” J. Appl. Remote Sens. 1, 011505 (2007). [CrossRef]
  31. V. E. Brando, J. M. Anstee, M. Wettle, A. G. Dekker, S. R. Phinn, and C. Roelfsema, “A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data,” Remote Sens. Environ. 113, 755–770 (2009). [CrossRef]
  32. C. D. Mobley, L. K. Sundman, C. O. Davis, J. H. Bowles, T. V. Downes, R. A. Leathers, M. J. Montes, W. P. Bissett, D. D. R. Kohler, R. P. Reid, E. M. Louchard, and A. Gleason, “Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables,” Appl. Opt. 44, 3576–3592 (2005). [CrossRef]
  33. J. Hedley, C. Roelfsema, and S. R. Phinn, “Efficient radiative transfer model inversion for remote sensing applications,” Remote Sens. Environ. 113, 2527–2532 (2009). [CrossRef]
  34. A. Albert and P. Gege, “Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800  nm for calculations of water and bottom properties,” Appl. Opt. 45, 2331–2343 (2006). [CrossRef]
  35. Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001). [CrossRef]
  36. A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, “Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner,” J. Oceanogr. 60, 519–530 (2004).
  37. I. Ioannou, A. Gilerson, B. Gross, F. Moshary, and S. Ahmed, “Deriving ocean color products using neural networks,” Remote Sens. Environ. 134, 78–99 (2013). [CrossRef]
  38. C. Jamet, H. Loisel, and D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient K-d(lambda) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117, C10023 (2012). [CrossRef]
  39. C. H. Chang, C. C. Liu, and C. G. Wen, “Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color,” Opt. Express 15, 252–265 (2007). [CrossRef]
  40. H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, “Retrieval of water optical properties for optically deep waters using genetic algorithms,” IEEE Trans. Geosci. Remote Sens. 41, 1123–1128 (2003). [CrossRef]
  41. L. J. Lee, “The pushbroom hyperspectral imager: ISIS and FUSHI,” Instruments Today 161(4), 12–21 (2007), in Chinese.
  42. Z. P. Lee, “Models, parameters, and approaches that used to generate wide range of absorption and backscattering spectra,” http://www.ioccg.org/groups/lee_data.pdf .
  43. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. P. Lee, ed. (IOCCG, 2006).
  44. Z. P. Lee, “Ocean-colour algorithms,” http://www.ioccg.org/groups/OCAG_data.html .
  45. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  46. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  47. S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of the water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689–1703 (1994). [CrossRef]
  48. IOCCG, “Synthesized datasets,” http://www.ioccg.org/data/synthetic.html .
  49. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton—analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995). [CrossRef]
  50. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited