OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events

Nima Pahlevan, Zhongping Lee, Chuanmin Hu, and John R. Schott  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. 648-665 (2014)
http://dx.doi.org/10.1364/AO.53.000648


View Full Text Article

Enhanced HTML    Acrobat PDF (2363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical remote sensing systems aboard geostationary platforms can provide high-frequency observations of bio-optical properties in dynamical coastal/oceanic waters. From the end-user standpoint, it is recognized that the fidelity of daily science products relies heavily on the radiometric sensitivity/performance of the imaging system. This study aims to determine the theoretical detection limits for bio-optical properties observed diurnally from a geostationary orbit. The analysis is based upon coupled radiative transfer simulations and the minimum radiometric requirements defined for the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission. The diurnal detection limits are found for the optically active constituents of water, including near-surface concentrations of chlorophyll-a (CHL) and total suspended solids (TSS), and the absorption of colored dissolved organic matter ( a CDOM ). The diurnal top-of-atmosphere radiance ( L t ) is modeled for several locations across the field of regard (FOR) to investigate the radiometric sensitivity at different imaging geometries. It is found that, in oceanic waters ( CHL = 0.07 mg / m 3 ), detecting changes smaller than 0.01 mg / m 3 in CHL is feasible for all locations and hours except for late afternoon observations on the edge of the FOR. For more trophic/turbid waters ( 0.6 < CHL < 4.5 ), the proposed system is found sensitive to changes (in CHL) smaller than 0.1 mg / m 3 when the air mass fraction (AMF) is less than 5. For a CDOM ( 440 ) , detecting the changes larger than 0.02 m 1 ( 0.08 < a CDOM ( 440 ) < 0.36 ) is found feasible for most of the imaging geometries. This is equivalent to AMF < 5 . For TSS, changes on the order of Δ TSS = 0.1 g / m 3 ( 0.5 < TSS < 4.5 ) are detectable from early morning to late afternoon across the entire FOR. This study gives insights into the radiometric sensitivity of the GEO-CAPE mission in identifying the changes in bio-optical properties at top-of-atmosphere (TOA), which aids in a more lucid understanding of the uncertainties associated with the surface products.

© 2014 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(010.5630) Atmospheric and oceanic optics : Radiometry
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 8, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 10, 2013
Published: January 28, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Nima Pahlevan, Zhongping Lee, Chuanmin Hu, and John R. Schott, "Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events," Appl. Opt. 53, 648-665 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-4-648


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Air Quality and Ocean Color from Space: GEO-CAPE,” NASA, 2013, http://geo-cape.larc.nasa.gov/ .
  2. J. I. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, M. Wang, “The United States’ next generation of atmospheric composition and coastal ecosystem measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission,” Bull. Am. Meteorol. Soc. 93, 1547–1566 (2012). [CrossRef]
  3. A. Mannino, Preliminary specifications for a strawman Coastal Ecosystem Mission (CEM) sensor (NASA, 2013).
  4. J.-H. Ryu, H.-J. Han, S. Cho, Y.-J. Park, Y.-H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47, 223–233 (2012). [CrossRef]
  5. C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012). [CrossRef]
  6. Y. Son, J.-E. Min, J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47, 359–375 (2012). [CrossRef]
  7. Z. Lee, M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, R. Ma, “Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics,” Ocean Sci. J. 47, 323–329 (2012). [CrossRef]
  8. G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009). [CrossRef]
  9. G. Neukermans, K. G. Ruddick, N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote Sens. Environ. 124, 564–580 (2012). [CrossRef]
  10. N. Pahlevan, Z. Lee, C. Hu, J. R. Schott, “Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits,” Proc SPIE 8724, 87240K (2013). [CrossRef]
  11. J. Salisbury, D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, B. Chapron, “Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters,” J. Geophys. Res. Oceans 116, C00H02 (2011). [CrossRef]
  12. C. D. Mobley, L. K. Sundman, Hydrolight 5, Ecolight5 User Guide (Sequoia Scientific, 2008).
  13. Z. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. Oceans 115, C09012 (2010). [CrossRef]
  14. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999). [CrossRef]
  15. G. R. Fournier, J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
  16. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef]
  17. K. J. Voss, A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).
  18. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006). [CrossRef]
  19. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef]
  20. M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001). [CrossRef]
  21. M. T. Eismann, Hyperspectral Remote Sensing (SPIE, 2012), p. 748.
  22. J. R. Schott, Remote Sensing: the Image Chain Approach, 2nd ed. (Oxford University, 2007), p. 666.
  23. R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996). [CrossRef]
  24. D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002). [CrossRef]
  25. T. Valle, C. Hardesty, C. O. Davis, N. Tufillaro, M. Stephens, W. Good, P. Spuhler, “Multislit optimized spectrometer for ocean color remote sensing,” Proc. SPIE 8510, 85100C (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited