OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Spectral synthesis provides two-dimensional videos on a one-dimensional screen with 360°-visibility and mirror-immunity

Sascha Grusche  »View Author Affiliations

Applied Optics, Vol. 53, Issue 4, pp. 674-684 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spatial light modulator (SLM)-based tunable sources synthesize any specified spectral power distribution. However, their complexity makes a simpler version desirable. A prism before an SLM-projector is shown to synthesize spectra at least as effectively. Moreover, this simple setup projects two-dimensional (2-D) videos onto a one-dimensional (1-D) screen. Viewed through a prism (or grating), rainbow-colored renderings of grayscale videos emerge. The semitransparent, 2-D virtual images face each viewer all around the 1-D screen. Uncannily, mirrors around the 1-D screen cannot flip the images. In hindsight, SLM-based spectral synthesis is essentially a form of spectral encoding that is applicable to video projection, and beyond.

© 2014 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(300.0300) Spectroscopy : Spectroscopy
(300.6170) Spectroscopy : Spectra
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1730) Vision, color, and visual optics : Colorimetry
(080.1235) Geometric optics : Apparent images

ToC Category:

Original Manuscript: September 23, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 8, 2013
Published: January 29, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Sascha Grusche, "Spectral synthesis provides two-dimensional videos on a one-dimensional screen with 360°-visibility and mirror-immunity," Appl. Opt. 53, 674-684 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. MacKinnon, U. Stange, P. Lane, C. MacAulay, and M. Quatrevalet, “Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy,” Appl. Opt. 44, 2033–2040 (2005). [CrossRef]
  2. I. Farup, J. H. Wold, T. Seim, and T. Søndrol, “Generating light with a specified spectral power distribution,” Appl. Opt. 46, 2411–2422 (2007). [CrossRef]
  3. M.-L. Lo, T.-H. Yang, and C.-C. Lee, “Fabrication of a tunable daylight simulator,” Appl. Opt. 50, C95–C99 (2011). [CrossRef]
  4. S. Tominaga and T. Horiuchi, “Spectral imaging by synchronizing capture and illumination,” J. Opt. Soc. Am. A 29, 1764–1775 (2012). [CrossRef]
  5. U. Kanade and M. Joshi, “Programmable light source,” U.S. patent8,107,169 (31January2012).
  6. J. P. Rice, S. W. Brown, and B. C. Johnson, “Hyperspectral image projectors for radiometric applications,” Metrologia 43, S61 (2006). [CrossRef]
  7. M. T. Eismann, J. Kerekes, A. P. Schaum, and R. A. Leathers, “Multispectral and hyperspectral imaging: introduction to the feature issue,” Appl. Opt. 47, MHI1 (2008).
  8. J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE 8254, 82540R (2012).
  9. I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005). [CrossRef]
  10. S. W. Brown, J. P. Rice, J. E. Neira, B. C. Johnson, and J. D. Jackson, “Spectrally tunable sources for advanced radiometric applications,” J. Res. Natl. Inst. Stand. Technol. 111, 401–410 (2006). [CrossRef]
  11. N. R. Nelson, “Hyperspectral scene generator and method of use,” U.S. patent7,106,435 B2 (12September2006).
  12. T. Horiuchi, H. Kakinuma, and S. Tominaga, “Effective illumination control for an active spectral imaging system,” in Proceedings of the 12th International Symposium on Multispectral Color Science (Society for Imaging Science and Technology, 2010), pp. 529–534.
  13. J. H. Hong, “Wavelength multiplexed two dimensional image transmission through single mode optical fiber,” U.S. patent5,315,423 A (24May1994).
  14. W. Rueckner, “The Spectrum,” http://sciencedemonstrations.fas.harvard.edu/icb/icb.do?keyword=k16940&pageid=icb.page93265 .
  15. F. Theilmann and S. Grusche, “An RGB approach to prismatic colours,” Phys. Educ. 48, 750 (2013). [CrossRef]
  16. H. R. Garner, “Variable spectrum generator,” U.S. patent6,657,758 B1 (2December2003).
  17. M. Müller and L.-M. Schön, “Virtuelle Beugungsbilder am Gitter,” in Didaktik der Physik. Frühjahrstagung Münster, H. Groetzebach and V. Nordmeier, eds. (PhyDid B, 2011) pp. 1–9, http://phydid.physik.fu-berlin.de/index.php/phydid-b/article/view/288/348 .
  18. I. Newton, Opticks: Or, a Treatise of the Reflections, Refractions, Inflections and Colours of Light, 4th ed. (Dover Publications, 1979).
  19. A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM Comput. Surv. 38, 13 (2006). [CrossRef]
  20. J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008). [CrossRef]
  21. C.-K. Lee, T. Lee, H. Sung, and S.-W. Min, “Analysis and design of wedge projection display system based on ray retracing method,” Appl. Opt. 52, 3964–3976 (2013). [CrossRef]
  22. M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17, 24045–24059 (2009). [CrossRef]
  23. A. Schwarz, A. Weiss, D. Fixler, Z. Zalevskya, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009). [CrossRef]
  24. J. Lunazzi and N. Rivera, “Pseudoscopic imaging in a double diffraction process with a slit,” Opt. Express 10, 1368–1373 (2002). [CrossRef]
  25. D. E. Hulsey and S. K. Case, “Fiber-optic image transmission system with high resolution,” Appl. Opt. 22, 2029–2033 (1983). [CrossRef]
  26. J. Calatroni, C. Froehly, and T.-C. Yang, “Transmission d’images en couleurs dans des fibres optiques par codage polychromatique,” Appl. Opt. 26, 2202–2205 (1987). [CrossRef]
  27. D. Mendlovic, J. Garcia, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, and A. W. Lohmann, “Wavelength-multiplexing system for single-mode image transmission,” Appl. Opt. 36, 8474–8480 (1997). [CrossRef]
  28. J. W. v. Goethe, Farbenlehre (Cotta, 1810). http://www.farben-welten.de/farben-welten/goethes-farbenlehre/enthuellung-der-theorie-newtons/erste-proposition-erstes-theorem-2.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited