OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Tomographic diffractive microscopy and multiview profilometry with flexible aberration correction

H. Liu, J. Bailleul, B. Simon, M. Debailleul, B. Colicchio, and O. Haeberlé  »View Author Affiliations

Applied Optics, Vol. 53, Issue 4, pp. 748-755 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a tomographic diffractive microscope in reflection, which permits observation of sample surfaces with an improved lateral resolution, compared to a conventional holographic microscope. From the same set of data, high-precision measurements can be performed on the shape of the reflective surface by reconstructing the phase of the diffracted field. Doing so allows for several advantages compared to classical holographic interferometric measurements: improvement in lateral resolution, easier phase unwrapping, reduction of the coherent noise, combined with the high-longitudinal precision provided by interferometric phase measurements. We demonstrate these capabilities by imaging various test samples.

© 2014 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(090.1000) Holography : Aberration compensation
(100.6640) Image processing : Superresolution
(110.6955) Imaging systems : Tomographic imaging

ToC Category:

Original Manuscript: November 15, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: December 20, 2013
Published: January 30, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

H. Liu, J. Bailleul, B. Simon, M. Debailleul, B. Colicchio, and O. Haeberlé, "Tomographic diffractive microscopy and multiview profilometry with flexible aberration correction," Appl. Opt. 53, 748-755 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008). [CrossRef]
  2. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).
  3. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002). [CrossRef]
  4. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002). [CrossRef]
  5. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008). [CrossRef]
  6. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006). [CrossRef]
  7. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006). [CrossRef]
  8. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009). [CrossRef]
  9. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef]
  10. X. Chen and S. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124–126 (1999). [CrossRef]
  11. J. R. Price, P. R. Bingham, and C. Thomas, “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 827–833 (2007). [CrossRef]
  12. J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010). [CrossRef]
  13. M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008). [CrossRef]
  14. B. Simon, M. Debailleul, V. Georges, V. Lauer, and O. Haeberlé, “Tomographic diffractive microscopy of transparent samples,” Eur. Phys. J. Appl. Phys. 44, 29–35 (2008). [CrossRef]
  15. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” in Novel Techniques in Microscopy (Optical Society of America, 2009).
  16. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013). [CrossRef]
  17. S. Vertu, J. Flügge, J.-J. Delaunay, and O. Haeberlé, “Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation,” Central Eur. J. Phys. 9, 969–974 (2011). [CrossRef]
  18. W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32, 1977–1979 (2007). [CrossRef]
  19. D. Malacara, Optical Shop Testing (Wiley, 2007) Vol. 59.
  20. M. Sarmis, B. Simon, M. Debailleul, B. Colicchio, V. Georges, J.-J. Delaunay, and O. Haeberlé, “High resolution reflection tomographic diffractive microscopy,” J. Mod. Opt. 57, 740–745 (2010). [CrossRef]
  21. B. Simon, M. Debailleul, A. Beghin, Y. Tourneur, and O. Haeberlé, “High resolution tomographic diffractive microscopy of biological samples,” J. Biophotonics 3, 462–467 (2010). [CrossRef]
  22. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  23. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632 (2000). [CrossRef]
  24. W. Qu, C. Choo, V. Singh, Y. Yingjie, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. 26, 2005–2011 (2009). [CrossRef]
  25. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003). [CrossRef]
  26. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006). [CrossRef]
  27. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45, 7667–7673 (2006). [CrossRef]
  28. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6, 100–103 (2008). [CrossRef]
  29. G. Parry and J. Dainty, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer, 1984), Vol. 9.
  30. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010). [CrossRef]
  31. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009). [CrossRef]
  32. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free absolute interferometry based on angular spectrum scanning,” Opt. Express 14, 655–663 (2006). [CrossRef]
  33. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816 (1987). [CrossRef]
  34. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34, 79–81 (2009). [CrossRef]
  35. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009). [CrossRef]
  36. G. Maire, Y. Ruan, T. Zhang, P. C. Chaumet, H. Giovannini, D. Sentenac, A. Talneau, K. Belkebir, and A. Sentenac, “High-resolution tomographic diffractive microscopy in reflection configuration,” J. Opt. Soc. Am. A 30, 2133–2139 (2013). [CrossRef]
  37. “White paper blu-ray disctm format 3rd edition, 2012,” http://blu-raydisc.com/ .
  38. “Refractive index database 2013” http://refractiveindex.info .
  39. P. Langehanenberg, B. Kemper, D. Dirksen, and G. Von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008). [CrossRef]
  40. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006). [CrossRef]
  41. S. Arhab, G. Soriano, K. Belkebir, A. Sentenac, and H. Giovannini, “Full wave optical profilometry,” J. Opt. Soc. Am. A 28, 576–580 (2011). [CrossRef]
  42. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002). [CrossRef]
  43. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012). [CrossRef]
  44. H. Liu, J. Bailleul, B. Simon, M. Debailleul, P. Henry, M.-J. Pac, and O. Haeberé, “Tomographic diffractive microscopy and multiview profilometry,” in Focus on Microcopy (Maastricht UMC+, 2013), p. 155, http://www.focusonmicroscopy.org/2013/index.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited