OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Analysis of cross-sectional image filters for evaluating nonaveraged optical microangiography images

Roberto Reif, Siavash Yousefi, Woo June Choi, and Ruikang K. Wang  »View Author Affiliations


Applied Optics, Vol. 53, Issue 5, pp. 806-815 (2014)
http://dx.doi.org/10.1364/AO.53.000806


View Full Text Article

Enhanced HTML    Acrobat PDF (1347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical microangiography (OMAG) is a method that enables the noninvasive extraction of blood vessels within biological tissues. OMAG B-frames are prone to noise; therefore, techniques such as B-frame averaging have been applied to reduce these effects. A drawback of this method is that the total acquisition time and amount of data collected are increased; hence, the data are susceptible to motion artifacts and decorrelation. In this paper we propose using an image filter on a nonaveraged OMAG B-frame to reduce its noise. Consequently, B-frames comparable to the averaged OMAG B-frame are obtained, while reducing the total acquisition and processing time. The method is tested with two different systems, a high-resolution spectral domain and a relatively low-resolution swept-source optical coherence tomography system. It is demonstrated that the weighted average filter produces the lowest B-frame error; however, all filters produce comparable results when quantifying the en face projection view image.

© 2014 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(170.6930) Medical optics and biotechnology : Tissue

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 7, 2013
Manuscript Accepted: December 20, 2013
Published: February 4, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Roberto Reif, Siavash Yousefi, Woo June Choi, and Ruikang K. Wang, "Analysis of cross-sectional image filters for evaluating nonaveraged optical microangiography images," Appl. Opt. 53, 806-815 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-5-806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef]
  4. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15, 4083–4097 (2007). [CrossRef]
  5. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17, 22190–22200 (2009). [CrossRef]
  6. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15, 016029 (2010). [CrossRef]
  7. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000). [CrossRef]
  8. Y. Wang and R. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35, 3538–3540 (2010). [CrossRef]
  9. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2, 1184–1193 (2011). [CrossRef]
  10. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4, 583–587 (2011). [CrossRef]
  11. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012). [CrossRef]
  12. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3, 2669–2680 (2012). [CrossRef]
  13. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33, 1530–1532 (2008). [CrossRef]
  14. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35, 1257–1259 (2010). [CrossRef]
  15. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008). [CrossRef]
  16. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009). [CrossRef]
  17. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012). [CrossRef]
  18. P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2, 3109–3118 (2011). [CrossRef]
  19. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express 2, 2770–2783 (2011). [CrossRef]
  20. Y. Jia, N. Alkayed, and R. K. Wang, “Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo,” J. Biomed. Opt. 14, 040505 (2009). [CrossRef]
  21. Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2, 1059–1068 (2011). [CrossRef]
  22. J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011). [CrossRef]
  23. J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012). [CrossRef]
  24. S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012). [CrossRef]
  25. R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012). [CrossRef]
  26. S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4, 1214–1228 (2013). [CrossRef]
  27. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010). [CrossRef]
  28. R. Reif and R. K. Wang, “Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography,” Quant. Imaging Med. Surg. 2, 207–212 (2012).
  29. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009). [CrossRef]
  30. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24, 1901–1910 (2007). [CrossRef]
  31. Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data, AMLBook (2012).
  32. Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013). [CrossRef]
  33. S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited