OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Speed, optical power, and off-axis imaging improvement of refractive liquid crystal lenses

Liwei Li, Doug Bryant, Tony Van Heugten, and Philip J. Bos  »View Author Affiliations


Applied Optics, Vol. 53, Issue 6, pp. 1124-1131 (2014)
http://dx.doi.org/10.1364/AO.53.001124


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two design approaches (multicell and addition of phase resets in single cell) are introduced to optimize the performances of tunable refractive liquid crystal lenses, including improvements on the switching speed, optical power, and the off-axis, wide-angle imaging performance. Key parameters and advantages for each method are discussed, and their effects on the performance are demonstrated in detail with numerical calculations.

© 2014 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: November 4, 2013
Revised Manuscript: January 14, 2014
Manuscript Accepted: January 14, 2014
Published: February 14, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Liwei Li, Doug Bryant, Tony Van Heugten, and Philip J. Bos, "Speed, optical power, and off-axis imaging improvement of refractive liquid crystal lenses," Appl. Opt. 53, 1124-1131 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-6-1124


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999). [CrossRef]
  2. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984). [CrossRef]
  3. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14, 11292–11298 (2006). [CrossRef]
  4. L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, 2010, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variablefocus.html .
  5. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998). [CrossRef]
  6. L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE 7944, 79440S (2011). [CrossRef]
  7. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004). [CrossRef]
  8. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51, 7630–7635 (2012). [CrossRef]
  9. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18, 13981–13992 (2010). [CrossRef]
  10. M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21, 26520–26526 (2013). [CrossRef]
  11. Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21, 9428–9436 (2013). [CrossRef]
  12. H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21, 18079–18088 (2013). [CrossRef]
  13. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys. 97, 103101 (2005). [CrossRef]
  14. L. Lu, V. Sergan, T. V. Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21, 7133–7138 (2013). [CrossRef]
  15. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21, 7916–7925 (2013). [CrossRef]
  16. Y. Li, Y. Liu, Q. Li, and S. T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51, 2568–2572 (2012). [CrossRef]
  17. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011). [CrossRef]
  18. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009). [CrossRef]
  19. P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express 19, 7468–7479 (2011). [CrossRef]
  20. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006). [CrossRef]
  21. L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52, 035007 (2013). [CrossRef]
  22. L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21, 8371–8381 (2013). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1988).
  24. D. Voelz, Computational Fourier Optics: A Matlab Tutorial (SPIE, 2011).
  25. L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt. 52, 1978–1986 (2013). [CrossRef]
  26. H. P. Herzig, Micro-optics: Elements, Systems and Applications (Taylor & Francis, 1997).
  27. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  28. C. Gu and P. Yeh, “Extended Jones matrix method. II,” J. Opt. Soc. Am. A 10, 966–973 (1993). [CrossRef]
  29. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (Lincoln Laboratory, MIT, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited