OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu  »View Author Affiliations

Applied Optics, Vol. 53, Issue 6, pp. 1159-1165 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated a three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrate consisting of large area carbon nanotube (CNT) arrays coated by gold-sol nanoparticles. A low-cost, simple process is used to prepare Au-decorated 3D CNT arrays. The SERS enhancement from the 3D CNT arrays, and two-dimensional (2D) CNT films substrates coated by different size gold-sol nanoparticles, was experimentally verified with Rhodamine 6G as the probe analyte. The experiments showed that the 3D CNT arrays substrate has a higher Raman enhancement compared with 2D CNT arrays substrate and planar glass substrate, due to the large specific surface area of CNT arrays and more gold nanoparticles on the CNT arrays sidewalls, which contribute the electromagnetic field and Raman intensity. Meanwhile, the 3D structure could enhance the excitation light trapping in CNT arrays, consequently increasing the light interaction with Au nanoparticles.

© 2014 Optical Society of America

OCIS Codes
(290.5860) Scattering : Scattering, Raman
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: August 9, 2013
Revised Manuscript: December 27, 2013
Manuscript Accepted: January 24, 2014
Published: February 19, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu, "Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate," Appl. Opt. 53, 1159-1165 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977). [CrossRef]
  3. Y. B. Guo, M. K. Khaing Oo, K. Reddy, and X. D. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012). [CrossRef]
  4. L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5, 4407–4413 (2011). [CrossRef]
  5. Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22, 295302 (2011). [CrossRef]
  6. S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15, 1595–1598 (2003). [CrossRef]
  7. C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010). [CrossRef]
  8. J. Zhang, Y. L. Chen, T. Fan, and Y. Zhu, “Large area Au decorated multi-walled CNTs film for surface enhanced Raman scattering,” Key Eng. Mat. 562, 826–831 (2013). [CrossRef]
  9. Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10, 1747–1753 (2010). [CrossRef]
  10. S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24, 5261–5266 (2012). [CrossRef]
  11. G. T. Duan, W. P. Cai, Y. Y. Luo, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006). [CrossRef]
  12. X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” Adv. Funct. Mater. 20, 2815–2824 (2010). [CrossRef]
  13. W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19, 3925–3936 (2011). [CrossRef]
  14. M. Becker, V. Sivakov, U. G. Gösele, T. Stelzner, A. Gudrun, H. J. Reich, S. Hoffmann, J. Michler, and S. H. Christiansen, “Nanowires enabling signal-enhanced nanoscale Raman spectroscopy,” Small 4, 398–404 (2008). [CrossRef]
  15. M. K. Lee, J. Seo, S. J. Cho, Y. Jo, S. Kim, Y. J. Kang, and H. Lee, “Novel 3D arrays of gold nanostructures on suspended platinum-coated carbon nanotubes as surface-enhanced Raman scattering substrates,” Mater. Lett. 81, 9–12 (2012). [CrossRef]
  16. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008). [CrossRef]
  17. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241, 20–22 (1973). [CrossRef]
  18. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025–1041 (2008). [CrossRef]
  19. Z. Krpetic, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni (II) ions with functional gold nanoparticles,” Small 8, 707–714 (2012). [CrossRef]
  20. L. Liz-Marzán, “Nanometals: formation and color,” Mater. Today 7(2), 26–31 (2004). [CrossRef]
  21. P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39, 1679–1687 (2008). [CrossRef]
  22. J. T. Krug, G. D. Wang, S. R. Emory, and S. M. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” J. Am. Chem. Soc. 121, 9208–9214 (1999). [CrossRef]
  23. X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy: substrate-related issues,” Anal. Bioanal. Chem. 394, 1729–1745 (2009). [CrossRef]
  24. X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19, 5547–5553 (2009). [CrossRef]
  25. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935–5944 (1984). [CrossRef]
  26. C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu, and H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays,” ACS Appl. Mater. 2, 1824–1828 (2010). [CrossRef]
  27. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008). [CrossRef]
  28. R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” J. Appl. Phys. 101, 064307 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited