OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Effect of coupled graphene oxide on the sensitivity of surface plasmon resonance detection

Yeonsoo Ryu, Seyoung Moon, Youngjin Oh, Yonghwi Kim, Taewoong Lee, Dong Ha Kim, and Donghyun Kim  »View Author Affiliations

Applied Optics, Vol. 53, Issue 7, pp. 1419-1426 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated graphene-oxide-(GO-) coupled surface plasmon resonance (SPR) detection sensitivity for sandwiched antigen-antibody interaction between human and antihuman immunoglobulin G molecules. GO was prepared in a Langmuir–Blodgett solution on gold and dielectric surfaces. Theoretical and experimental data suggest that an increased dielectric spacer thickness reduces resonance shifts for GO-coupled SPR detection as dielectric properties of GO appear to prevail. In general, a metal-enhanced structure was shown to provide a larger resonance shift by plasmonic field enhancement. The far-field properties were described in terms of near-field overlap. The peak resonance shift that was obtained with GO-coupled SPR detection was enhanced to 113% of the resonance shift obtained by conventional thin-film-based SPR detection and may further be improved by GO stacking.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.0310) Thin films : Thin films
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Optics at Surfaces

Original Manuscript: November 19, 2013
Revised Manuscript: January 26, 2014
Manuscript Accepted: January 29, 2014
Published: February 27, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Yeonsoo Ryu, Seyoung Moon, Youngjin Oh, Yonghwi Kim, Taewoong Lee, Dong Ha Kim, and Donghyun Kim, "Effect of coupled graphene oxide on the sensitivity of surface plasmon resonance detection," Appl. Opt. 53, 1419-1426 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392 (2007). [CrossRef]
  2. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000). [CrossRef]
  3. S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49, 484–491 (2010). [CrossRef]
  4. S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012). [CrossRef]
  5. B. Sepúlveda, A. Calle, L. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006). [CrossRef]
  6. J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, “Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10, 2755–2760 (2010). [CrossRef]
  7. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005). [CrossRef]
  8. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009). [CrossRef]
  9. H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, “Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance,” Biosens. Bioelectron. 41, 249–255 (2013). [CrossRef]
  10. A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997). [CrossRef]
  11. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration,” Opt. Lett. 29, 2378–2380 (2004). [CrossRef]
  12. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011). [CrossRef]
  13. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010). [CrossRef]
  14. Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355 (2011). [CrossRef]
  15. Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin–streptavidin interactions,” Appl. Phys. Lett. 101, 233701 (2012). [CrossRef]
  16. Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014). [CrossRef]
  17. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010). [CrossRef]
  18. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem. 2, 1015–1024 (2010). [CrossRef]
  19. H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013). [CrossRef]
  20. C.-F. Huang, G.-H. Yao, R.-P. Liang, and J.-D. Qiu, “Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A,” Biosens. Bioelectron. 50, 305–310 (2013). [CrossRef]
  21. O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012). [CrossRef]
  22. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010). [CrossRef]
  23. S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19, 458–466 (2011). [CrossRef]
  24. R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011). [CrossRef]
  25. K. V. Sreekanth, S. Zeng, K.-T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuators B 182, 424–428 (2013). [CrossRef]
  26. S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B 65, 32–34 (2000). [CrossRef]
  27. Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001). [CrossRef]
  28. K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors 10, 11390–11399 (2010). [CrossRef]
  29. Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B 162, 35–42 (2012). [CrossRef]
  30. J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5221, 197–206 (2003). [CrossRef]
  31. X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sens. Actuators A 157, 9–14 (2010). [CrossRef]
  32. Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express 19, 26651–26659 (2011). [CrossRef]
  33. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998). [CrossRef]
  34. J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, “A quantitative diffraction-based sandwich immunoassay,” Anal. Biochem. 313, 262–266 (2003). [CrossRef]
  35. C.-H. Lin, H.-Y. Chen, C.-J. Yu, P.-L. Lu, C.-H. Hsieh, B.-Y. Hsieh, Y.-F. Chang, and C. Chou, “Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor,” Anal. Biochem. 385, 224–228 (2009). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  37. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499–8506 (2008). [CrossRef]
  38. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004). [CrossRef]
  39. C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, “Characterization of IgG Langmuir–Blodgett films immobilized on functionalized polymers,” Talanta 52, 921–930 (2000). [CrossRef]
  40. A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003). [CrossRef]
  41. N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, “Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance,” J. Immunol. Methods 175, 149–160 (1994). [CrossRef]
  42. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol. 3, 538–542 (2008). [CrossRef]
  43. L. J. Cote, F. Kim, and J. Huang, “Langmuir–Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131, 1043–1049 (2009). [CrossRef]
  44. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010). [CrossRef]
  45. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011). [CrossRef]
  46. W. Lee and D. Kim, “Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29, 1367–1376 (2012). [CrossRef]
  47. Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem. 83, 648–653 (2011). [CrossRef]
  48. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chem. Rev. 112, 6156–6214 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited