OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Polarized radiative transfer in an arbitrary multilayer semitransparent medium

Xun Ben, Hong-Liang Yi, and He-Ping Tan  »View Author Affiliations


Applied Optics, Vol. 53, Issue 7, pp. 1427-1441 (2014)
http://dx.doi.org/10.1364/AO.53.001427


View Full Text Article

Enhanced HTML    Acrobat PDF (733 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarized radiative transfer in a multilayer system is an important problem and has wide applications in various fields. In this work, a Monte Carlo (MC) model is developed to simulate polarized radiative transfer in a semitransparent arbitrary multilayer medium with different refractive indices in each layer. Two kinds of polarization mechanisms are considered: scattering by particles and reflection and refraction at the Fresnel surfaces or interfaces. The MC method has an obvious superiority in that complex mathematical derivations can be avoided in solving the polarization by Fresnel reflection and refraction in an arbitrary multilayer system. We define the vector radiative transfer matrix (VRTM), which describes the polarization characteristics of radiative transfer, and obtain four elements of Stokes vector using the VRTM. The results for the two-layer model by MC method are compared against those for coupled atmosphere–ocean model by the discrete–ordinate method available in the literature, which validates the correctness of the MC multilayer model of polarized radiative transfer. Finally, the results for three-layer, five-layer, and ten-layer models are presented in graphical form. Results show that in the multilayer system, total reflections occurring at the surfaces/interfaces have significant effects on the polarized radiative transfer, which causes abrupt changes or fluctuations like waves in the curves of the Stokes vector.

© 2014 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(230.4170) Optical devices : Multilayers
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: September 27, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: January 20, 2014
Published: February 27, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Xun Ben, Hong-Liang Yi, and He-Ping Tan, "Polarized radiative transfer in an arbitrary multilayer semitransparent medium," Appl. Opt. 53, 1427-1441 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-7-1427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tsang and J. A. Kong, “Radiative transfer theory for active remote sensing of half-space random media,” Radio Sci. 13, 763–773 (1978). [CrossRef]
  2. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  3. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  4. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (Taylor and Francis, 2010), Chap. 9, pp. 253–282.
  5. M. P. Mengüç and S. Manickavasagam, “Characterization of size and structure of agglomerates and inhomogeneous particles via polarized light,” Int. J. Eng. Sci. 36, 1569–1593 (1998). [CrossRef]
  6. G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519–1527 (1968). [CrossRef]
  7. R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 41, 117–145 (1989). [CrossRef]
  8. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transfer 46, 413–423 (1991). [CrossRef]
  9. C. E. Siewert, “A discrete-ordinates solution for radiative-transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 64, 227–254 (2000). [CrossRef]
  10. J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007). [CrossRef]
  11. F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a spherical-shell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 117, 59–70 (2013). [CrossRef]
  12. H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transfer 72, 467–483 (2002). [CrossRef]
  13. X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef]
  14. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530–6539 (2004). [CrossRef]
  15. R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particle-laden semi-transparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transfer 84, 383–394 (2004). [CrossRef]
  16. C. Davis, C. Emde, and R. Harwood, “A 3-D polarized reversed Monte Carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Remote Sens. 43, 1096–1101 (2005). [CrossRef]
  17. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005). [CrossRef]
  18. J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transfer 104, 277–287 (2007). [CrossRef]
  19. C. Cornet, L. C. Labonnote, and F. Szczap, “Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transfer 111, 174–186 (2010). [CrossRef]
  20. A. A. Kokhanovsky, V. P. Budak, C. Cornet, M. Z. Duan, C. Emde, I. L. Katsev, D. A. Klyukov, S. V. Korkin, L. C. Labonnote, B. Mayer, Q. L. Min, T. Nakajima, Y. Ota, A. S. Prikhach, V. V. Rozanov, T. Yokota, and E. P. Zege, “Benchmark results in vector atmospheric radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 111, 1931–1946 (2010). [CrossRef]
  21. G. W. Kattawar, G. N. Plass, and J. A. Guinn, “Monte Carlo calculations of the polarization of radiation in the Earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 3, 353–372 (1973). [CrossRef]
  22. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989). [CrossRef]
  23. P. W. Zhai, Y. X. Hu, C. R. Trepte, and P. L. Lucker, “A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method,” Opt. Express 17, 2057–2079 (2009). [CrossRef]
  24. P. W. Zhai, Y. X. Hu, J. Cdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transfer 111, 1025–1040 (2010). [CrossRef]
  25. P. W. Zhai, Y. X. Hu, D. B. Josset, C. R. Trepte, P. L. Lucker, and B. Lin, “Advanced angular interpolation in the vector radiative transfer for coupled atmosphere and ocean systems,” J. Quant. Spectrosc. Radiat. Transfer 115, 19–27 (2013). [CrossRef]
  26. X. Q. He, D. L. Pan, Y. Bai, Q. K. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China Ser. D 50, 442–452 (2007). [CrossRef]
  27. X. Q. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transfer 111, 1426–1448 (2010). [CrossRef]
  28. Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010). [CrossRef]
  29. E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transfer 111, 616–633 (2010). [CrossRef]
  30. R. D. M. Garcia, “Fresnel boundary and interface conditions for polarized radiative transfer in a multilayer medium,” J. Quant. Spectrosc. Radiat. Transfer 113, 306–317 (2012). [CrossRef]
  31. P. W. Zhai, G. W. Kattawar, and Y. X. Hu, “Comment on transmission matrix for dielectric interface,” J. Quant. Spectrosc. Radiat. Transfer 113, 1981–1984 (2012). [CrossRef]
  32. R. D. M. Garcia, “Response to ‘Comment on transmission matrix for a dielectric interface’,” J. Quant. Spectrosc. Radiat. Transfer 113, 2251–2254 (2012). [CrossRef]
  33. R. D. M. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to Fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transfer 115, 28–45 (2013). [CrossRef]
  34. S. Chandrasekhar, Radiative Transfer (Oxford University, 1950).
  35. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  36. M. I. Mishchenko, Scattering, Absorption, and Emission of Light by Small Particles (NASA, 2002).
  37. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 1333 (1980). [CrossRef]
  38. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001). [CrossRef]
  39. R. M. Green, Spherical Astronomy (Cambridge University, 1985).
  40. B. A. Whitney, “Monte Carlo radiative transfer,” arXiv:1104.4990 (2011).
  41. R. Siegel and C. M. Spuckler, “Refractive index effects on radiation in an absorbing, emitting, and scattering laminated layer,” J. Heat Transfer 115, 194–200 (1993). [CrossRef]
  42. K. Masuda and T. Takashima, “Computational accuracy of radiation emerging from the ocean surface in the model atmosphere–ocean system,” Pap. Met. Geophys. 37, 1–13 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited