Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarized radiative transfer in an arbitrary multilayer semitransparent medium

Not Accessible

Your library or personal account may give you access

Abstract

Polarized radiative transfer in a multilayer system is an important problem and has wide applications in various fields. In this work, a Monte Carlo (MC) model is developed to simulate polarized radiative transfer in a semitransparent arbitrary multilayer medium with different refractive indices in each layer. Two kinds of polarization mechanisms are considered: scattering by particles and reflection and refraction at the Fresnel surfaces or interfaces. The MC method has an obvious superiority in that complex mathematical derivations can be avoided in solving the polarization by Fresnel reflection and refraction in an arbitrary multilayer system. We define the vector radiative transfer matrix (VRTM), which describes the polarization characteristics of radiative transfer, and obtain four elements of Stokes vector using the VRTM. The results for the two-layer model by MC method are compared against those for coupled atmosphere–ocean model by the discrete–ordinate method available in the literature, which validates the correctness of the MC multilayer model of polarized radiative transfer. Finally, the results for three-layer, five-layer, and ten-layer models are presented in graphical form. Results show that in the multilayer system, total reflections occurring at the surfaces/interfaces have significant effects on the polarized radiative transfer, which causes abrupt changes or fluctuations like waves in the curves of the Stokes vector.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Approximate solution to vector radiative transfer in gradient-index medium

Xun Ben, Hong-Liang Yi, and He-Ping Tan
Appl. Opt. 53(3) 388-401 (2014)

Vector radiative transfer in a multilayer medium by natural element method

Yong Zhang, Yong-Jun Kim, Hong-Liang Yi, and He-Ping Tan
J. Opt. Soc. Am. A 33(4) 576-588 (2016)

Transient radiative transfer in a scattering slab considering polarization

Hongliang Yi, Xun Ben, and Heping Tan
Opt. Express 21(22) 26693-26713 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved