OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Simulation and analysis of adjacency effects in coastal waters: a case study

Barbara Bulgarelli, Viatcheslav Kiselev, and Giuseppe Zibordi  »View Author Affiliations


Applied Optics, Vol. 53, Issue 8, pp. 1523-1545 (2014)
http://dx.doi.org/10.1364/AO.53.001523


View Full Text Article

Enhanced HTML    Acrobat PDF (1775 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A methodology has been developed and applied to accurately quantify and analyze adjacency effects in satellite ocean color data for a set of realistic and representative observation conditions in the northern Adriatic Sea. The procedure properly accounts for sea surface reflectance anisotropy, off-nadir views, coastal morphology, and atmospheric multiple scattering. The study further includes a sensitivity analysis on commonly applied approximations. Results indicate that, within the accuracy limits defined by the radiometric resolution of ocean color sensors, adjacency effects in coastal waters might be significant at both visible and near-infrared wavelengths up to several kilometers off the coast. These results additionally highlight a significant dependence on the angle of observation, on the directional reflectance properties of the sea surface, and on the atmospheric multiple scattering.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 12, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: January 8, 2014
Published: March 5, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Barbara Bulgarelli, Viatcheslav Kiselev, and Giuseppe Zibordi, "Simulation and analysis of adjacency effects in coastal waters: a case study," Appl. Opt. 53, 1523-1545 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-53-8-1523


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Otterman and R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith,” Appl. Opt. 18, 2852–2860 (1979). [CrossRef]
  2. D. Tanré, M. Herman, P. Y. Deschamps, and A. de Leffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979). [CrossRef]
  3. Y. J. Kaufman, “Effect of the Earth’s atmosphere on contrast for zenith observation,” J. Geophys. Res. 84, 3165–3172 (1979). [CrossRef]
  4. Y. J. Kaufman, “Atmospheric effect on spatial resolution of surface imagery,” Appl. Opt. 23, 3400–3408 (1984). [CrossRef]
  5. W. A. Pearce, “Monte Carlo study of the atmospheric spread function,” Appl. Opt. 25, 438–447 (1986). [CrossRef]
  6. E. Vermote and A. Vermeulen, “Atmospheric correction algorithm: spectral reflectances (MOD09),” NASA MODIS ATBD version 4.0 (1999).
  7. P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995). [CrossRef]
  8. H. Yang, H. R. Gordon, and T. Zhang, “Island perturbation to the sky radiance over the ocean: simulations,” Appl. Opt. 34, 8354–8362 (1995). [CrossRef]
  9. R. Santer and C. Schmechtig, “Adjacency effects on water surfaces: primary scattering approximation and sensitivity study,” Appl. Opt. 39, 361–375 (2000). [CrossRef]
  10. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000). [CrossRef]
  11. A. Sei, “Analysis of adjacency effects for two Lambertian half-spaces,” Int. J. Remote Sens. 28, 1873–1890 (2007). [CrossRef]
  12. S. Bélanger, J. K. Ehn, and M. Babin, “Impact of sea ice on the retrieval of water-leaving reflectance, chlorophyll a concentration and inherent optical properties from satellite ocean color data,” Remote Sens. Environ. 111, 51–68 (2007). [CrossRef]
  13. H. W. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef]
  14. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999). [CrossRef]
  15. R. Santer and F. Zagolski, “ICOL—improve contrast between ocean and land,” ATBD-MERIS Level 1-C, version 1.1 (2009).
  16. C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249 (2001). [CrossRef]
  17. G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal atmosphere and sea time series (CoASTS), Part 1: a tower-based, long-term measurement program,” NASA Technical Memorandum 206892, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 2002), Vol. 19, pp. 1–29.
  18. G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009). [CrossRef]
  19. F. Mélin, G. Zibordi, and B. N. Holben, “Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions,” IEEE Geosci. Remote Sens. Lett. 10, 1185–1189 (2013). [CrossRef]
  20. G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009). [CrossRef]
  21. I. S. Robinson, Measuring the Oceans from Space (Springer-Verlag, 2004).
  22. P. Y. Deschamps, M. Herman, and D. Tanré, “Definitions of atmospheric radiance and transmittances in remote sensing,” Remote Sens. Environ. 13, 89–92 (1983). [CrossRef]
  23. V. B. Kisselev, L. Roberti, and G. Perona, “Finite-element algorithm for radiative transfer in vertically inhomogeneous media: numerical scheme and applications,” Appl. Opt. 34, 8460–8471 (1995). [CrossRef]
  24. B. Bulgarelli, V. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38, 1530–1542 (1999). [CrossRef]
  25. H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ. 112, 2677–2685 (2008). [CrossRef]
  26. B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005). [CrossRef]
  27. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  28. B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 86, 315–334 (2004). [CrossRef]
  29. B. Bulgarelli, G. Zibordi, and J. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003). [CrossRef]
  30. B. Bulgarelli and G. Zibordi, “Remote sensing of ocean colour: accuracy assessment of an approximate atmospheric correction method,” Int. J. Remote Sens. 24, 491–509 (2003). [CrossRef]
  31. B. Bulgarelli and F. Mélin, “SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm,” Oceanologia 45, 655–677 (2003).
  32. G. Zibordi and B. Bulgarelli, “Effects of cosine error in irradiance measurements from field ocean color radiometers,” Appl. Opt. 46, 5529–5538 (2007). [CrossRef]
  33. J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
  34. V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 85, 419–435 (2004). [CrossRef]
  35. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  36. H. Iwabuchi, “Efficient Monte Carlo methods for radiative transfer modeling,” J. Atmos. Sci. 63, 2324–2339 (2006). [CrossRef]
  37. L. Roberti, “Monte Carlo radiative transfer in the microwave and in the visible: biasing techniques,” Appl. Opt. 36, 7929–7938 (1997). [CrossRef]
  38. G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400  nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003). [CrossRef]
  39. A. A. Lacis and J. Hansen, “A parameterization for the absorption of solar radiation in the Earth’s atmosphere,” J. Atmos. Sci. 31, 118–133 (1974). [CrossRef]
  40. E. Vigroux, “Contribution à l’étude expérimentale de l’absorption de l’ozone,” Ann. Phys. 8, 709–762 (1953).
  41. W. A. Marggraf and M. Griggs, “Aircraft measurements and calculations of the total downward flux of solar radiation as a function of altitude,” J. Atmos. Sci. 26, 469–477 (1969). [CrossRef]
  42. C. Fröhlich and G. E. Shaw, “New determination of Rayleigh scattering in the terrestrial atmosphere,” Appl. Opt. 19, 1773–1775 (1980). [CrossRef]
  43. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980). [CrossRef]
  44. A. Ångström, “Techniques of determining the turbidity of the atmosphere,” Tellus 13, 214–223 (1961). [CrossRef]
  45. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50  km,” (Air Force Cambridge Research Laboratory, 1968).
  46. B. Sturm and G. Zibordi, “SeaWiFS atmospheric correction by an approximate model and vicarious calibration,” Int. J. Remote Sens. 23, 489–501 (2002). [CrossRef]
  47. B. Bulgarelli and F. Mélin, “SeaWiFS data processing code REMBRANDT,” Version 1.0 EUR 19154 EN (2000).
  48. E. C. Monahan and I. G. O’Muircheartaigh, “Whitecaps and the passive remote sensing of the ocean surface,” Int. J. Remote Sens. 7, 627–642 (1986). [CrossRef]
  49. F. Mélin, “Personal communication,” JRC-EC, Ispra (I).
  50. J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal Atmosphere and Sea Time Series Project (CoASTS), Part 2: Data Analysis,” NASA Technical Memorandum 206892, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 2002), Vol. 20, pp. 1–25.
  51. J. Berthon, F. Mélin, and G. Zibordi, “Ocean colour remote sensing of the optically complex European seas,” in Remote Sensing of the European Seas (Springer, 2008), pp. 35–52.
  52. E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteorol. Climatol. 47, 2879–2894 (2008).
  53. ASTER Spectral Library [Online]. Available: http://speclib.jpl.nasa.gov/search-1/vegetation (Accessed: 21 April 2013].
  54. USGS Digital Spectral Library [Online]. Available: http://speclab.cr.usgs.gov/spectral-lib.html (Accessed: 21 April 2013).
  55. IGBP Land Ecosystem Classification Map Image [Online]. Available: http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/ (Accessed: 21 April 2013).
  56. C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51, 6045–6062 (2012). [CrossRef]
  57. E. Vermote, D. Tanrè, J. L. Deuzè, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S): an Overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
  58. D. Tanré, M. Herman, and P. Y. Deschamps, “Influence of the background contribution upon space measurements of ground reflectance,” Appl. Opt. 20, 3676–3684 (1981). [CrossRef]
  59. J. P. Doyle and G. Zibordi, “Optical propagation within a three-dimensional shadowed atmosphere-ocean field: application to large deployment structures,” Appl. Opt. 41, 4283–4306 (2002). [CrossRef]
  60. S. B. Hooker and G. Zibordi, “Platform perturbations in above-water radiometry,” Appl. Opt. 44, 553–567 (2005). [CrossRef]
  61. F. Mélin and G. Zibordi, “Vicarious calibration of satellite ocean color sensors at two coastal sites,” Appl. Opt. 49, 798–810 (2010). [CrossRef]
  62. B. Pinty, J. L. Widlowski, N. Gobron, M. M. Verstraete, and D. J. Diner, “Uniqueness of multiangular measurements. I. An indicator of subpixel surface heterogeneity from MISR,” IEEE Trans. Geosci. Remote Sens. 40, 1560–1573 (2002). [CrossRef]
  63. H. Rahman, B. Pinty, and M. M. Verstraete, “Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data,” J. Geophys. Res. 98, 20791–20801 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited