Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 1,
  • pp. 48-54
  • (2007)

Attenuated Total Reflection Fourier Transform Infrared Imaging with Variable Angles of Incidence: A Three-Dimensional Profiling of Heterogeneous Materials

Not Accessible

Your library or personal account may give you access

Abstract

Depth profiling in Fourier transform infrared (FT-IR) spectroscopic imaging has been demonstrated using a single reflection variable angle attenuated total reflection (ATR) accessory. Chemical information about samples can be obtained in three dimensions by acquiring ATR-FT-IR images at different angles of incidence through the ATR crystal. The image quality and field of view achieved at different angles of incidence has been discussed. A polymer film comprising two layers has been used as an example to demonstrate the principle of the measurement. The demonstrated approach is a promising tool to obtain depth profiles of heterogeneous materials. The extent of the measured depths is limited and ranges from approximately 0.3 to 4 μm, but the spatial resolution in the z-direction is not limited by diffraction. The development of this approach opens up the possibility to study the spatial heterogeneity of thin films including biological tissues, such as hair and skin, with high depth resolution.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Optimization for vertically scanning terahertz attenuated total reflection imaging

Hongxiang Liu, Yuye Wang, Degang Xu, Zhinan Jiang, Jining Li, Limin Wu, Chao Yan, Longhuang Tang, Yixin He, Dexian Yan, Xin Ding, Hua Feng, and Jianquan Yao
Opt. Express 26(16) 20744-20757 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved