Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 12,
  • pp. 1290-1294
  • (2007)

Behaviors of the "Raman Spectroscopic Signature of Life" in Single Living Fission Yeast Cells Under Different Nutrient, Stress, and Atmospheric Conditions

Not Accessible

Your library or personal account may give you access

Abstract

Time- and space-resolved Raman spectra of mitochondria in single living fission yeast cells have been measured under various nutrient, stress, and atmospheric conditions. A focus is placed on the behavior of the Raman band located at 1602 cm−1, which sensitively reflects the metabolic activity in mitochondria and which has been called by us the "Raman spectroscopic signature of life". Addition of nutrients increases the intensity of this band by ∼1.5 times, confirming its correlation with the metabolic activity in mitochondria. The spectra of cells cultured under 100% N2, 100% O2, and N2/O2 (VN2:VO2 ≅ 4:1) atmospheres have been measured for both 16O2 and 18O2. Yeast cells have been found to lose their metabolic activity after the culture under 100% N2 and 100% O2 atmospheres. Cells cultured under a N2/16O2 (16O2 = 20%) atmosphere show strong "Raman spectroscopic signature of life". No 18O isotopic shift has been found for the wavenumber 1602 cm−1, indicating that the origin of this signature is neither O2 nor an O-containing small molecule. Addition of H2O2 causes a quick decrease of the "Raman spectroscopic signature of life", followed by the cis–trans isomerization in the unsaturated phospholipid chain. The "Raman spectroscopic signature of life" has thus been proved to be a reliable real-time and in vivo indicator for monitoring the metabolic activity in living cells.

PDF Article
More Like This
NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers

Haiyang Tang, Huilu Yao, Guiwen Wang, Yun Wang, Yong-qing Li, and Meifu Feng
Opt. Express 15(20) 12708-12716 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.