OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Raman and Infrared Spectroscopic Investigations on Aqueous Alkali Metal Phosphate Solutions and Density Functional Theory Calculations of Phosphate–Water Clusters

Wolfram W. Rudolph and Gert Irmer

Applied Spectroscopy, Vol. 61, Issue 12, pp. 1312-1327 (2007)


View Full Text Article

Acrobat PDF (2117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Phosphate (PO43−) solutions in water and heavy water have been studied by Raman and infrared spectroscopy over a broad concentration range (0.0091–5.280 mol/L) including a hydrate melt at 23 °C. In the low wavenumber range, spectra in R-format have been constructed and the R normalization procedure has been briefly discussed. The vibrational modes of the tetrahedral PO43−(aq) (Td symmetry) have been assigned and compared to the calculated values derived from the density functional theory (DFT) method for the unhydrated PO43−(Td) and phosphate–water clusters: PO43−·H2O (C2v), PO43−·2H2O (D2d), PO43−·4H2O (D2d), PO43−·6H2O (Td), and PO43−·12H2O (T), a cluster with a complete first hydration sphere of water molecules. A cluster with a second hydration sphere of 12 water molecules and 6 in the first sphere, PO43−·18H2O (T), has also been calculated. Agreement between measured and calculated vibrational modes is best in the case of the PO43−·12H2O cluster and the PO43−·18H2O cluster but far less so in the case of the unhydrated PO43− or phosphate–water cluster with a lower number of water molecules than 12. The asymmetric, broad band shape of v1(a1) PO43− in aqueous solutions has been measured as a function of concentration and the asymmetric and broad band shape was explained. However, the same mode in heavy water has only half the full width at half-height compared to the mode in normal water. The PO43− is strongly hydrated in aqueous solutions. This has been verified by Raman spectroscopy comparing v2(H2O), the deformation mode of water, and the stretching modes, the v1OH and v3OH of water, in K3PO4 solutions as a function of concentration and comparison with the same modes in pure water. A mode at ∼240 cm−1 (isotropic R spectrum) has been detected and assigned to the restricted translational mode of the strong hydrogen bonds formed between phosphate and water, P–O…HOH. In very concentrated K3PO4 solutions (C0 ≥ 3.70 mol/L) and in the hydrate melt, formation of contact ion pairs (CIPs) could be detected. The phosphate in the CIPs shows a symmetry lowering of the Td symmetry to C3v. In the less concentrated solutions, PO43−(aq) solvent separated ion pairs and doubly solvent separated ion pairs exist, while in very dilute solutions fully hydrated ions are present (C0 ≤ 0.005 mol/L). Quantitative Raman measurements have been carried out to follow the hydrolysis of PO43−(aq) over a very broad concentration range. From the hydrolysis data, the pK3 value for H3PO4 has been determined to be 12.45 at 23 °C.

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Wolfram W. Rudolph and Gert Irmer, "Raman and Infrared Spectroscopic Investigations on Aqueous Alkali Metal Phosphate Solutions and Density Functional Theory Calculations of Phosphate–Water Clusters," Appl. Spectrosc. 61, 1312-1327 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=as-61-12-1312

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited