OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Temperature-Controlled Confocal Raman Microscopy to Detect Phase Transitions in Phospholipid Vesicles

Christopher B. Fox, Grant A. Myers, and Joel M. Harris

Applied Spectroscopy, Vol. 61, Issue 5, pp. 465-469 (2007)

View Full Text Article

Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Optical-trapping confocal Raman microscopy enhances the capabilities of traditional Raman spectroscopy for the analysis of small particles by significantly reducing the sampling volume and minimizing background signal from the particle surroundings. Chemical composition and structural information can be obtained from optically trapped particles in aqueous solution without the need for labeling or extensive sample preparation. In this work, the challenges of measuring temperature dependent changes in suspended particles are addressed with the development of a small-volume, thermally conductive sample cell attached to a temperature-controlled microscope stage. To demonstrate its function, the gel to liquid-crystalline phase transitions of optically trapped lipid vesicles, composed of pure 1,2-ditridecanoyl-sn-glycero-3-phosphocholine (DTPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), were detected by changes in Raman spectra of the lipid bilayer. The Raman scattering data were found to correlate well with differential scanning calorimetry (DSC) results.

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Christopher B. Fox, Grant A. Myers, and Joel M. Harris, "Temperature-Controlled Confocal Raman Microscopy to Detect Phase Transitions in Phospholipid Vesicles," Appl. Spectrosc. 61, 465-469 (2007)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited