OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Planar Fiber-Optic Chips for Broadband Spectroscopic Interrogation of Thin Films

Brooke M. Beam, R. Clayton Shallcross, Jinuk Jang, Neal R. Armstrong, and Sergio B. Mendes

Applied Spectroscopy, Vol. 61, Issue 6, pp. 585-592 (2007)


View Full Text Article

Acrobat PDF (358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A planar fiber-optic chip (FOC) has been developed using side-polished optical fibers and characterized for broadband absorbance and fluorescence detection of molecular films. FOC technology combines the sensitivity of an attenuated total reflection (ATR) element with the ease of use of fiber-optic-based spectrometers and light sources to create an improved platform for spectroscopic analysis of molecular adsorbates. A multi-mode optical fiber (core diameter = 50 μm, numerical aperture = 0.22, stepped refractive index profile) mounted in a glass V-groove block was side-polished to create a planar platform that allows access to the evanescent field escaping from the fiber core. For this generation of FOC technology, the exposed evanescent field has an interaction length of approximately 17.2 mm. The FOC platform was independently characterized through measurements of thin-film and bulk absorbing samples. The device performance was compared to the existing ATR technology and methods for increasing sensitivity of the FOC were investigated and validated. Additionally, we have demonstrated the ability of the FOC to both evanescently excite and collect fluorescence through guided modes of the optical fiber for a surface-confined luminescent semiconductor nanoparticle film (4 nm diameter, ligand capped, CdSe core). The FOC described here with a supported planar interface can facilitate the use of conventional planar deposition technologies and provide a robust planar platform that is amenable for incorporation into various sensor technologies.

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Brooke M. Beam, R. Clayton Shallcross, Jinuk Jang, Neal R. Armstrong, and Sergio B. Mendes, "Planar Fiber-Optic Chips for Broadband Spectroscopic Interrogation of Thin Films," Appl. Spectrosc. 61, 585-592 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=as-61-6-585


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited