Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 6,
  • pp. 608-612
  • (2007)

Infrared and Raman Spectral Signatures of Aromatic Nitration in Thermoplastic Urethanes

Not Accessible

Your library or personal account may give you access

Abstract

The spectral signatures of nitro attack of the aromatic portion of thermoplastic urethanes (TPU) were determined. Eight fragment molecules were synthesized that represent the nitrated and pristine methylenediphenyl section common to many TPUs. Infrared (IR) and Raman (785 nm illumination) spectra were collected and modeled using the B3LYP/6-31G(d)//B3LYP/6-31G(d) model chemistry. Normal mode animations were used to fully assign the vibrational spectra of each fragment. The vibrational assignment was used to develop a diagnostic method for aromatic nitro attack in thermoplastic urethanes. The symmetric NO<sub>2</sub> stretch coupled out of phase with the C–NO<sub>2</sub> stretch (1330 cm<sup>−1</sup>) was found to be free from spectral interferences. Spectral reference regions that enable correction for physical differences between samples were determined. The carbonyl stretch at 1700 cm<sup>−1</sup> was the best IR reference region, yielding a limit of quantitation (LOQ) of 0.66 ± 0.02 g N/100 g Estane. Secondary IR reference regions were the N–H stretch at 3330 cm<sup>−1</sup> or the urethane nitrogen deformation at 1065 cm<sup>−1</sup>. The reference region in the Raman was a ring stretching mode at 1590 cm<sup>−1</sup>, giving an LOQ of 0.69 ± 0.02 g N/100 g Estane. Raman spectroscopy displayed a larger calibration sensitivity (slope = 0.110 ± 0.004) than IR spectroscopy (slope = 0.043 ± 0.001) for nitration determination due to the large nitro Raman cross-section. The full spectral assignment of all eight molecules in the infrared and Raman is presented as supplemental material.

PDF Article
More Like This
Infrared Spectral Studies of Peroxyacetyl Nitrate (PAN)

Inge Fild and D. J. Lovell
J. Opt. Soc. Am. 60(10) 1315-1318 (1970)

An Aromatic Detector for the Infrared*

B. D. McMichael, E. A. Kmetko, and S. Mrozowski
J. Opt. Soc. Am. 44(1) 26-30 (1954)

Optimizing infrared spectral discrimination to enhance disease diagnostics: monitoring the signatures of inflammatory bowel diseases with anti-TNFα therapy

Hemendra Ghimire, Xinjie Hu, Gengsheng Qin, and A. G. Unil Perera
Biomed. Opt. Express 11(8) 4679-4694 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.